Domain-Level Disentanglement Framework Based on Information Enhancement for Cross-Domain Cold-Start Recommendation

Nian Rong, Fei Xiong, Shirui Pan, Guixun Luo, Jia Wu, Liang Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recommender systems in various applications often encounter the challenge of cold-start, which refers to how to provide recommendations for completely new users. Cross-domain recommendation offers a solution to address this cold-start issue by leveraging user interaction information from other domains and providing recommendations for users in the target domain. However, applying the classic two-tower model in cross-domain scenarios for zero interaction cold-start users proves challenging, and most existing cross-domain cold-start recommendation models adopt an embedding-mapping framework that lacks end-to-end efficiency. In this paper, we propose a generalized framework that Domain-level Disentanglement framework based on information enhancement for Cross-domain Cold-start Recommendation. On one hand, we achieve deep utilization of domain-level information through independent extraction of domain knowledge and fusion using heuristic strategies. On the other hand, our model is incorporated with an information enhancement network based on user attention and a user personalized adaptor. We introduce measures to assess user variability and immutability in cross-domain recommendation, aiming to eliminate inter-domain bias and highlight individual user preferences. Experimental results on widely used cross-domain recommendation datasets demonstrate that our proposed model outperforms state-of-the-art methods, validating its effectiveness.

Original languageEnglish
Title of host publicationSpecial Track on AI Alignment
EditorsToby Walsh, Julie Shah, Zico Kolter
PublisherAssociation for the Advancement of Artificial Intelligence
Pages12488-12496
Number of pages9
Edition12
ISBN (Electronic)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOIs
StatePublished - 11 Apr 2025
Event39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States
Duration: 25 Feb 20254 Mar 2025

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number12
Volume39
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Country/TerritoryUnited States
CityPhiladelphia
Period25/02/254/03/25

Fingerprint

Dive into the research topics of 'Domain-Level Disentanglement Framework Based on Information Enhancement for Cross-Domain Cold-Start Recommendation'. Together they form a unique fingerprint.

Cite this