Domain-Adversarial Transformer Network for Multiphase Liver Tumor Segmentation

Yangfan Ni, Geng Chen, Zhan Feng, Heng Cui, Dimitris Metaxas, Shaoting Zhang, Wentao Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Accurate liver tumor segmentation is a prerequisite for data-driven tumor analysis. Multiphase computed tomography (CT) with extensive liver tumor characteristics is typically used as the most crucial diagnostic basis. However, the large variations in contrast, texture, and tumor structure between CT phases limit the generalization capabilities of the associated segmentation algorithms. Inadequate feature integration across phases might also lead to a performance decrease. To address these issues, we present a domain-adversarial transformer (DA-Tran) network for segmenting liver tumors from multiphase CT images. A DA module is designed to generate domain-adapted feature maps from the non-contrast-enhanced (NC) phase, arterial (ART) phase, portal venous (PV) phase, and delay phase (DP) images. These domain-adapted feature maps are then combined with 3D transformer blocks to capture patch-structured similarity and global context attention. The experimental findings show that DA-Tran produces cutting-edge tumor segmentation outcomes, making it an ideal candidate for this co-segmentation challenge.

Original languageEnglish
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: 24 Jul 202327 Jul 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period24/07/2327/07/23

Fingerprint

Dive into the research topics of 'Domain-Adversarial Transformer Network for Multiphase Liver Tumor Segmentation'. Together they form a unique fingerprint.

Cite this