TY - JOUR
T1 - Does GCL Need a Large Number of Negative Samples? Enhancing Graph Contrastive Learning with Effective and Efficient Negative Sampling
AU - Huang, Yongqi
AU - Zhao, Jitao
AU - He, Dongxiao
AU - Jin, Di
AU - Huang, Yuxiao
AU - Wang, Zhen
N1 - Publisher Copyright:
Copyright © 2025, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2025/4/11
Y1 - 2025/4/11
N2 - Graph Contrastive Learning (GCL) aims to self-supervised learn low-dimensional graph representations, primarily through instance discrimination, which involves manually mining positive and negative pairs from graphs, increasing the similarity of positive pairs while decreasing negative pairs. Drawing from the success of Contrastive Learning (CL) in other domains, a consensus has been reached that the effectiveness of GCLs depends on a large number of negative pairs. As a result, despite the significant computational overhead, GCLs typically leverage as many negative node pairs as possible to improve model performance. However, given that nodes within a graph are interconnected, we argue that nodes cannot be treated as independent instances. Therefore, we challenge this consensus: Does employing more negative nodes lead to a more effective GCL model? To answer this, we explore the role of negative nodes in the commonly used InfoNCE loss for GCL and observe that: (1) Counterintuitively, a large number of negative nodes can actually hinder the model’s ability to distinguish nodes with different semantics. (2) A smaller number of high-quality and non-topologically coupled negative nodes are sufficient to enhance the discriminability of representations. Based on these findings, we propose a new method called GCL with Effective and Efficient Negative samples, E2Neg, which learns discriminative representations using only a very small set of representative negative samples. E2Neg significantly reduces computational overhead and speeds up model training. We demonstrate the effectiveness and efficiency of E2Neg across multiple datasets compared to other GCL methods.
AB - Graph Contrastive Learning (GCL) aims to self-supervised learn low-dimensional graph representations, primarily through instance discrimination, which involves manually mining positive and negative pairs from graphs, increasing the similarity of positive pairs while decreasing negative pairs. Drawing from the success of Contrastive Learning (CL) in other domains, a consensus has been reached that the effectiveness of GCLs depends on a large number of negative pairs. As a result, despite the significant computational overhead, GCLs typically leverage as many negative node pairs as possible to improve model performance. However, given that nodes within a graph are interconnected, we argue that nodes cannot be treated as independent instances. Therefore, we challenge this consensus: Does employing more negative nodes lead to a more effective GCL model? To answer this, we explore the role of negative nodes in the commonly used InfoNCE loss for GCL and observe that: (1) Counterintuitively, a large number of negative nodes can actually hinder the model’s ability to distinguish nodes with different semantics. (2) A smaller number of high-quality and non-topologically coupled negative nodes are sufficient to enhance the discriminability of representations. Based on these findings, we propose a new method called GCL with Effective and Efficient Negative samples, E2Neg, which learns discriminative representations using only a very small set of representative negative samples. E2Neg significantly reduces computational overhead and speeds up model training. We demonstrate the effectiveness and efficiency of E2Neg across multiple datasets compared to other GCL methods.
UR - http://www.scopus.com/inward/record.url?scp=105003903724&partnerID=8YFLogxK
U2 - 10.1609/aaai.v39i16.33925
DO - 10.1609/aaai.v39i16.33925
M3 - 会议文章
AN - SCOPUS:105003903724
SN - 2159-5399
VL - 39
SP - 17511
EP - 17518
JO - Proceedings of the AAAI Conference on Artificial Intelligence
JF - Proceedings of the AAAI Conference on Artificial Intelligence
IS - 16
T2 - 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Y2 - 25 February 2025 through 4 March 2025
ER -