Distinguishable Speaker Anonymization Based on Formant and Fundamental Frequency Scaling

Jixun Yao, Qing Wang, Yi Lei, Pengcheng Guo, Lei Xie, Namin Wang, Jie Liu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Speech data on the Internet are proliferating exponentially because of the emergence of social media, and the sharing of such personal data raises obvious security and privacy concerns. One solution to mitigate these concerns involves concealing speaker identities before sharing speech data, also referred to as speaker anonymization. In our previous work, we have developed an automatic speaker verification (ASV)-model-free anonymization framework to protect speaker privacy while preserving speech intelligibility. Although the framework ranked first place in VoicePrivacy 2022 challenge, the anonymization was imperfect, since the speaker distinguishability of the anonymized speech was deteriorated. To address this issue, in this paper, we directly model the formant distribution and fundamental frequency (F0) to represent speaker identity and anonymize the source speech by the uniformly scaling formant and F0. By directly scaling the formant and F0, the speaker distinguishability degradation of the anonymized speech caused by the introduction of other speakers is prevented. The experimental results demonstrate that our proposed framework can improve the speaker distinguishability and significantly outperforms our previous framework in voice distinctiveness. Furthermore, our proposed method can trade off the privacy-utility by using different scaling factors.

Original languageEnglish
Title of host publicationICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728163277
DOIs
StatePublished - 2023
Event48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 - Rhodes Island, Greece
Duration: 4 Jun 202310 Jun 2023

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2023-June
ISSN (Print)1520-6149

Conference

Conference48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
Country/TerritoryGreece
CityRhodes Island
Period4/06/2310/06/23

Keywords

  • Speaker anonymization
  • privacy protection
  • voice privacy challenge

Fingerprint

Dive into the research topics of 'Distinguishable Speaker Anonymization Based on Formant and Fundamental Frequency Scaling'. Together they form a unique fingerprint.

Cite this