TY - JOUR
T1 - Dispersion network-transition entropy
T2 - A metric for characterizing the complexity of nonlinear signals
AU - Geng, Bo
AU - Wang, Haiyan
AU - Shen, Xiaohong
AU - Zhang, Hongwei
AU - Yan, Yongsheng
N1 - Publisher Copyright:
© 2024 American Physical Society.
PY - 2024/8
Y1 - 2024/8
N2 - Extracting meaningful information from signals has always been a challenge. Due to the influence of environmental noise, collected signals often exhibit nonlinear characteristics, rendering traditional metrics inadequate in capturing the dynamic properties and complex structures of signals. To address this challenge, this study proposes an innovative metric for quantifying signal complexity - dispersion network-transition entropy (DNTE), which integrates the concepts of complex networks and information entropy. Specifically, we assign single cumulative distribution function values to network nodes and utilize Markov chains to represent links, transforming nonlinear signals into weighted directed complex networks. Subsequently, we assess the importance of network nodes and links, and employ the mathematical expression of information entropy to calculate the DNTE value, quantifying the complexity of the original signal. Next, through extensive experiments on simulated chaotic models and real underwater acoustic signals, we confirm the outstanding performance of DNTE. The results indicate that, compared to Lempel-Ziv complexity, permutation entropy, and dispersion entropy, DNTE not only more accurately reflects changes in signal complexity but also exhibits higher computational efficiency. Importantly, DNTE demonstrates optimal performance in distinguishing different categories of chaotic models, ships, and modulation signals, showcasing its significant potential in extracting effective information from signals.
AB - Extracting meaningful information from signals has always been a challenge. Due to the influence of environmental noise, collected signals often exhibit nonlinear characteristics, rendering traditional metrics inadequate in capturing the dynamic properties and complex structures of signals. To address this challenge, this study proposes an innovative metric for quantifying signal complexity - dispersion network-transition entropy (DNTE), which integrates the concepts of complex networks and information entropy. Specifically, we assign single cumulative distribution function values to network nodes and utilize Markov chains to represent links, transforming nonlinear signals into weighted directed complex networks. Subsequently, we assess the importance of network nodes and links, and employ the mathematical expression of information entropy to calculate the DNTE value, quantifying the complexity of the original signal. Next, through extensive experiments on simulated chaotic models and real underwater acoustic signals, we confirm the outstanding performance of DNTE. The results indicate that, compared to Lempel-Ziv complexity, permutation entropy, and dispersion entropy, DNTE not only more accurately reflects changes in signal complexity but also exhibits higher computational efficiency. Importantly, DNTE demonstrates optimal performance in distinguishing different categories of chaotic models, ships, and modulation signals, showcasing its significant potential in extracting effective information from signals.
UR - http://www.scopus.com/inward/record.url?scp=85201269345&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.110.024205
DO - 10.1103/PhysRevE.110.024205
M3 - 文章
C2 - 39295027
AN - SCOPUS:85201269345
SN - 1539-3755
VL - 110
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 2
M1 - 024205
ER -