Discriminative vanishing component analysis

Chenping Hou, Feiping Nie, Dacheng Tao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Vanishing Component Analysis (VCA) is a recently proposed prominent work in machine learning. It narrows the gap between tools and computational algebra: The vanishing ideal and its applications to classification problem. In this paper, we will analyze VCA in the kernel view, which is also another important research direction in machine learning. Under a very weak assumption, we provide a different point of view to VCA and make the kernel trick on VCA become possible. We demonstrate that the projection matrix derived by VCA is located in the same space as that of Kernel Principal Component Analysis (KPCA) with a polynomial kernel. Two groups of projections can express each other by linear transformation. Furthermore, we prove that KPCA and VCA have identical discriminative power, provided that the ratio trace criteria is employed as the measurement. We also show that the kernel formulated by the inner products of VCA's projections can be expressed by the KPCA's kernel linearly. Based on the analysis above, we proposed a novel Discriminative Vanishing Component Analysis (DVCA) approach. Experimental results are provided for demonstration.

Original languageEnglish
Title of host publication30th AAAI Conference on Artificial Intelligence, AAAI 2016
PublisherAAAI press
Pages1666-1672
Number of pages7
ISBN (Electronic)9781577357605
StatePublished - 2016
Event30th AAAI Conference on Artificial Intelligence, AAAI 2016 - Phoenix, United States
Duration: 12 Feb 201617 Feb 2016

Publication series

Name30th AAAI Conference on Artificial Intelligence, AAAI 2016

Conference

Conference30th AAAI Conference on Artificial Intelligence, AAAI 2016
Country/TerritoryUnited States
CityPhoenix
Period12/02/1617/02/16

Fingerprint

Dive into the research topics of 'Discriminative vanishing component analysis'. Together they form a unique fingerprint.

Cite this