TY - JOUR
T1 - Differential responses of forest strata species richness to paleoclimate and forest structure
AU - Wang, Shuyue
AU - Jiménez-Alfaro, Borja
AU - Pan, Shaoan
AU - Yu, Jinghua
AU - Sanaei, Anvar
AU - Sayer, Emma J.
AU - Ye, Ji
AU - Hao, Zhanqing
AU - Fang, Shuai
AU - Lin, Fei
AU - Yuan, Zuoqiang
AU - Wang, Xugao
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/11/1
Y1 - 2021/11/1
N2 - Regional factors, such as historical and contemporary climate conditions, and local factors, such as vegetation structural attributes, can influence current patterns of plant species richness but their relative roles remain unknown, particularly across forest strata. Here, we used a multi-scale survey of temperate forest plots across a large region of Northeast China to explore the relative importance of environmental factors (paleoclimate, contemporary climate, topography and anthropogenic disturbance) and forest structural attributes (stem abundance, stand basal area and tree size variation) on tree, shrub, and herb species richness. Although environmental and forest structural factors all played a role in explaining plant species richness patterns, their relative roles varied in direction and magnitude depending on forest stratum. Tree species richness increased with the magnitude of change in temperature since the Last Glacial Maximum (AnomalyMAT) but declined with increasing magnitude of change in precipitation (AnomalyMAP). By contrast, herb species richness declined with increasing AnomalyMAT but increased with AnomalyMAP, highlighting contrasting processes for tree and herb species richness driven by paleoclimate. Contemporary climate played a lesser role in explaining species richness, but tree species richness increased with diurnal temperature range, shrub species richness increased with the climatic moisture index, and herb species richness increased with both climatic variables. Herb species richness also increased with disturbance intensity, whereas tree and shrub richness declined. Overall, plant species richness increased significantly with all forest structural attributes, except for stem abundance, which had a negative effect on herb species richness, and forest structure mediated the linkages between plant species richness and disturbance or climate. The pronounced influence of paleoclimate on forest plant species richness highlights the potential threat of current climate change for forest diversity. Together, simultaneous consideration of past and current climate as well as forest structural attributes could improve our understanding of the complex mechanisms shaping patterns of plant species richness across forest strata.
AB - Regional factors, such as historical and contemporary climate conditions, and local factors, such as vegetation structural attributes, can influence current patterns of plant species richness but their relative roles remain unknown, particularly across forest strata. Here, we used a multi-scale survey of temperate forest plots across a large region of Northeast China to explore the relative importance of environmental factors (paleoclimate, contemporary climate, topography and anthropogenic disturbance) and forest structural attributes (stem abundance, stand basal area and tree size variation) on tree, shrub, and herb species richness. Although environmental and forest structural factors all played a role in explaining plant species richness patterns, their relative roles varied in direction and magnitude depending on forest stratum. Tree species richness increased with the magnitude of change in temperature since the Last Glacial Maximum (AnomalyMAT) but declined with increasing magnitude of change in precipitation (AnomalyMAP). By contrast, herb species richness declined with increasing AnomalyMAT but increased with AnomalyMAP, highlighting contrasting processes for tree and herb species richness driven by paleoclimate. Contemporary climate played a lesser role in explaining species richness, but tree species richness increased with diurnal temperature range, shrub species richness increased with the climatic moisture index, and herb species richness increased with both climatic variables. Herb species richness also increased with disturbance intensity, whereas tree and shrub richness declined. Overall, plant species richness increased significantly with all forest structural attributes, except for stem abundance, which had a negative effect on herb species richness, and forest structure mediated the linkages between plant species richness and disturbance or climate. The pronounced influence of paleoclimate on forest plant species richness highlights the potential threat of current climate change for forest diversity. Together, simultaneous consideration of past and current climate as well as forest structural attributes could improve our understanding of the complex mechanisms shaping patterns of plant species richness across forest strata.
KW - Anthropogenic disturbance
KW - Forest strata
KW - Forest structural attributes
KW - Paleoclimate
KW - Plant species richness
KW - Temperate forest
UR - http://www.scopus.com/inward/record.url?scp=85112817502&partnerID=8YFLogxK
U2 - 10.1016/j.foreco.2021.119605
DO - 10.1016/j.foreco.2021.119605
M3 - 文章
AN - SCOPUS:85112817502
SN - 0378-1127
VL - 499
JO - Forest Ecology and Management
JF - Forest Ecology and Management
M1 - 119605
ER -