DIDFuse: Deep image decomposition for infrared and visible image fusion

Zixiang Zhao, Shuang Xu, Chunxia Zhang, Junmin Liu, Jiangshe Zhang, Pengfei Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

141 Scopus citations

Abstract

Infrared and visible image fusion, a hot topic in the field of image processing, aims at obtaining fused images keeping the advantages of source images. This paper proposes a novel auto-encoder (AE) based fusion network. The core idea is that the encoder decomposes an image into background and detail feature maps with low- and high-frequency information, respectively, and that the decoder recovers the original image. To this end, the loss function makes the background/detail feature maps of source images similar/dissimilar. In the test phase, background and detail feature maps are respectively merged via a fusion module, and the fused image is recovered by the decoder. Qualitative and quantitative results illustrate that our method can generate fusion images containing highlighted targets and abundant detail texture information with strong reproducibility and meanwhile surpass state-of-the-art (SOTA) approaches.

Original languageEnglish
Title of host publicationProceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
EditorsChristian Bessiere
PublisherInternational Joint Conferences on Artificial Intelligence
Pages970-976
Number of pages7
ISBN (Electronic)9780999241165
StatePublished - 2020
Externally publishedYes
Event29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, Japan
Duration: 1 Jan 2021 → …

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2021-January
ISSN (Print)1045-0823

Conference

Conference29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Country/TerritoryJapan
CityYokohama
Period1/01/21 → …

Fingerprint

Dive into the research topics of 'DIDFuse: Deep image decomposition for infrared and visible image fusion'. Together they form a unique fingerprint.

Cite this