TY - GEN
T1 - DHSNet
T2 - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
AU - Liu, Nian
AU - Han, Junwei
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/12/9
Y1 - 2016/12/9
N2 - Traditional1 salient object detection models often use hand-crafted features to formulate contrast and various prior knowledge, and then combine them artificially. In this work, we propose a novel end-to-end deep hierarchical saliency network (DHSNet) based on convolutional neural networks for detecting salient objects. DHSNet first makes a coarse global prediction by automatically learning various global structured saliency cues, including global contrast, objectness, compactness, and their optimal combination. Then a novel hierarchical recurrent convolutional neural network (HRCNN) is adopted to further hierarchically and progressively refine the details of saliency maps step by step via integrating local context information. The whole architecture works in a global to local and coarse to fine manner. DHSNet is directly trained using whole images and corresponding ground truth saliency masks. When testing, saliency maps can be generated by directly and efficiently feedforwarding testing images through the network, without relying on any other techniques. Evaluations on four benchmark datasets and comparisons with other 11 state-of-the-art algorithms demonstrate that DHSNet not only shows its significant superiority in terms of performance, but also achieves a real-time speed of 23 FPS on modern GPUs.
AB - Traditional1 salient object detection models often use hand-crafted features to formulate contrast and various prior knowledge, and then combine them artificially. In this work, we propose a novel end-to-end deep hierarchical saliency network (DHSNet) based on convolutional neural networks for detecting salient objects. DHSNet first makes a coarse global prediction by automatically learning various global structured saliency cues, including global contrast, objectness, compactness, and their optimal combination. Then a novel hierarchical recurrent convolutional neural network (HRCNN) is adopted to further hierarchically and progressively refine the details of saliency maps step by step via integrating local context information. The whole architecture works in a global to local and coarse to fine manner. DHSNet is directly trained using whole images and corresponding ground truth saliency masks. When testing, saliency maps can be generated by directly and efficiently feedforwarding testing images through the network, without relying on any other techniques. Evaluations on four benchmark datasets and comparisons with other 11 state-of-the-art algorithms demonstrate that DHSNet not only shows its significant superiority in terms of performance, but also achieves a real-time speed of 23 FPS on modern GPUs.
UR - http://www.scopus.com/inward/record.url?scp=84986250467&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2016.80
DO - 10.1109/CVPR.2016.80
M3 - 会议稿件
AN - SCOPUS:84986250467
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 678
EP - 686
BT - Proceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
PB - IEEE Computer Society
Y2 - 26 June 2016 through 1 July 2016
ER -