Dependence-guided multi-view clustering

Xia Dong, Danyang Wu, Feiping Nie, Rong Wang, Xuelong Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

In this paper, we propose a novel approach called dependence-guided multi-view clustering (DGMC). Our model enhances the dependence between unified embedding learning and clustering, as well as promotes the dependence between unified embedding and embedding of each view. Specifically, DGMC learns a unified embedding and partitions data in a joint fashion, thus the clustering results can be directly obtained. A kernel dependence measure is employed to learn a unified embedding by forcing it to be close to different views, thus the complex dependence among different views can be captured. Moreover, an implicit-weight learning mechanism is provided to ensure the diversity of different views. An efficient algorithm with rigorous convergence analysis is derived to solve the proposed model. Experimental results demonstrate the advantages of the proposed method over the state of the arts on real-world datasets.

Original languageEnglish
Title of host publicationICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3650-3654
Number of pages5
ISBN (Electronic)9781728176055
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada
Duration: 6 Jun 202111 Jun 2021

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2021-June
ISSN (Print)1520-6149

Conference

Conference2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021
Country/TerritoryCanada
CityVirtual, Toronto
Period6/06/2111/06/21

Keywords

  • Dependence-guided
  • Implicit-weight learning
  • Kernel dependence measure
  • Multi-view clustering

Fingerprint

Dive into the research topics of 'Dependence-guided multi-view clustering'. Together they form a unique fingerprint.

Cite this