Deep Self-Supervised Learning for Few-Shot Hyperspectral Image Classification

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Scopus citations

Abstract

Despite the success of deep learning based methods for hyperspectral imagery (HSI) classification, they demand amounts of labeled samples for training whereas the labeled samples in lots of applications are always insufficient due to the expensive manual annotation cost. To address this problem, we propose a two-branch deep learning based method for few-shot HSI classification, where two branches separately accomplish HSI classification in a cube-wise level and a cube-pair level. With a shared feature extractor sub-network, the self-supervised knowledge contained in the cube-pair branch provides an effective way to regularize the original few-shot HSI classification branch (i.e., cube-wise branch) with limited labeled samples, which thus improves the performance of HSI classification. The superiority of the proposed method on few-shot HSI classification is demonstrated experimentally on two HSI benchmark datasets.

Original languageEnglish
Title of host publication2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages501-504
Number of pages4
ISBN (Electronic)9781728163741
DOIs
StatePublished - 26 Sep 2020
Event2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Virtual, Waikoloa, United States
Duration: 26 Sep 20202 Oct 2020

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)

Conference

Conference2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020
Country/TerritoryUnited States
CityVirtual, Waikoloa
Period26/09/202/10/20

Keywords

  • HSI classification
  • deep learning
  • few-shot
  • self-supervised task

Fingerprint

Dive into the research topics of 'Deep Self-Supervised Learning for Few-Shot Hyperspectral Image Classification'. Together they form a unique fingerprint.

Cite this