Deep depth super-resolution: Learning depth super-resolution using deep convolutional neural network

Xibin Song, Yuchao Dai, Xueying Qin

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

50 Scopus citations

Abstract

Depth image super-resolution is an extremely challenging task due to the information loss in sub-sampling. Deep convolutional neural network has been widely applied to color image super-resolution. Quite surprisingly, this success has not been matched to depth super-resolution. This is mainly due to the inherent difference between color and depth images. In this paper, we bridge up the gap and extend the success of deep convolutional neural network to depth super-resolution. The proposed deep depth super-resolution method learns the mapping from a low-resolution depth image to a high-resolution one in an end-to-end style. Furthermore, to better regularize the learned depth map, we propose to exploit the depth field statistics and the local correlation between depth image and color image. These priors are integrated in an energy minimization formulation, where the deep neural network learns the unary term, the depth field statistics works as global model constraint and the color-depth correlation is utilized to enforce the local structure in depth image. Extensive experiments on various depth super-resolution benchmark datasets show that our method outperforms the state-of-the-art depth image super-resolution methods with a margin.

Original languageEnglish
Title of host publicationComputer Vision - 13th Asian Conference on Computer Vision, ACCV 2016, Revised Selected Papers
EditorsKo Nishino, Shang-Hong Lai, Vincent Lepetit, Yoichi Sato
PublisherSpringer Verlag
Pages360-376
Number of pages17
ISBN (Print)9783319541891
DOIs
StatePublished - 2017
Externally publishedYes

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10114 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Fingerprint

Dive into the research topics of 'Deep depth super-resolution: Learning depth super-resolution using deep convolutional neural network'. Together they form a unique fingerprint.

Cite this