DBA: An Efficient Approach to Boost Transfer-Based Adversarial Attack Performance Through Information Deletion

Zepeng Fan, Peican Zhu, Chao Gao, Jinbang Hong, Keke Tang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In practice, deep learning models are easy to be fooled by input images with subtle perturbations, and those images are called adversarial examples. Regarding one model, the crafted adversarial examples can successfully fool other models with varying architectures but the same task, which is referred to as adversarial transferability. Nevertheless, in practice, it is hard to get information about the model to be attacked, transfer-based adversarial attacks have developed rapidly. Later, different techniques are proposed to promote adversarial transferability. Different from existing input transformation attacks based on spatial transformation, our approach is a novel one on the basis of information deletion. By deleting squares of the input images by channels, we mitigate overfitting on the surrogate model of the adversarial examples and further enhance adversarial transferability. The corresponding performance of our method is superior to the existing input transformation attacks on different models (here, we consider unsecured models and defense ones), as demonstrated by extensive evaluations on ImageNet.

Original languageEnglish
Title of host publicationKnowledge Science, Engineering and Management - 16th International Conference, KSEM 2023, Proceedings
EditorsZhi Jin, Yuncheng Jiang, Wenjun Ma, Robert Andrei Buchmann, Ana-Maria Ghiran, Yaxin Bi
PublisherSpringer Science and Business Media Deutschland GmbH
Pages276-288
Number of pages13
ISBN (Print)9783031402852
DOIs
StatePublished - 2023
EventKnowledge Science, Engineering and Management - 16th International Conference, KSEM 2023, Proceedings - Guangzhou, China
Duration: 16 Aug 202318 Aug 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14118 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceKnowledge Science, Engineering and Management - 16th International Conference, KSEM 2023, Proceedings
Country/TerritoryChina
CityGuangzhou
Period16/08/2318/08/23

Keywords

  • Adversarial examples
  • Information deletion
  • Input transformation
  • Transfer-based adversarial attacks
  • Transferability

Fingerprint

Dive into the research topics of 'DBA: An Efficient Approach to Boost Transfer-Based Adversarial Attack Performance Through Information Deletion'. Together they form a unique fingerprint.

Cite this