TY - JOUR
T1 - Cu1−xMgxAl3 spinel solid solution as a sustained release catalyst
T2 - One-pot green synthesis and catalytic performance in methanol steam reforming
AU - Hou, Xiaoning
AU - Qing, Shaojun
AU - Liu, Yajie
AU - Zhang, Lei
AU - Zhang, Caishun
AU - Feng, Gang
AU - Wang, Xiang
AU - Gao, Zhixian
AU - Qin, Yong
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2021/1/15
Y1 - 2021/1/15
N2 - A versatile and green method for the synthesis of an efficient catalyst applied in methanol steam reforming is promising in view of clean energy production. Cu1−xMgxAl3 ternary spinel oxide catalysts have been prepared by a one-pot solid-phase reaction method using Cu(OH)2, Al2O3·xH2O and MgCO3 as the raw materials. The structure, reducibility, surface chemical state, and the aluminum ion distribution are comprehensively characterized by XRD, UV–vis, XPS, H2-TPR, N2O chemisorption, and 27Al MAS NMR techniques. The performances of the catalysts in methanol steam reforming are evaluated. Compared with binary Cu-Al spinel, the incorporation of Mg into the spinel lattice results in the change of Al3+ cation distribution between tetrahedral and octahedral sites, and thus the variation of copper surrounding environment can be inferred. Consequently, the copper releasing rate from the Mg containing spinel structure declines substantially, which is believed to be in favor of maintaining a stable catalytic performance longer. Besides, the ternary spinel oxide might facilitate the in-situ formation of smaller nano copper metals compared to CuAl3 binary spinel catalyst. Among all the catalysts, Cu0.9Mg0.1Al3 presents the highest activity as well as the best catalytic stability. The findings of this report suggest that introducing a foreign cation into the Cu-Al spinel structure might be a promising way to regulate the copper releasing property for achieving a better sustained release catalyst system.
AB - A versatile and green method for the synthesis of an efficient catalyst applied in methanol steam reforming is promising in view of clean energy production. Cu1−xMgxAl3 ternary spinel oxide catalysts have been prepared by a one-pot solid-phase reaction method using Cu(OH)2, Al2O3·xH2O and MgCO3 as the raw materials. The structure, reducibility, surface chemical state, and the aluminum ion distribution are comprehensively characterized by XRD, UV–vis, XPS, H2-TPR, N2O chemisorption, and 27Al MAS NMR techniques. The performances of the catalysts in methanol steam reforming are evaluated. Compared with binary Cu-Al spinel, the incorporation of Mg into the spinel lattice results in the change of Al3+ cation distribution between tetrahedral and octahedral sites, and thus the variation of copper surrounding environment can be inferred. Consequently, the copper releasing rate from the Mg containing spinel structure declines substantially, which is believed to be in favor of maintaining a stable catalytic performance longer. Besides, the ternary spinel oxide might facilitate the in-situ formation of smaller nano copper metals compared to CuAl3 binary spinel catalyst. Among all the catalysts, Cu0.9Mg0.1Al3 presents the highest activity as well as the best catalytic stability. The findings of this report suggest that introducing a foreign cation into the Cu-Al spinel structure might be a promising way to regulate the copper releasing property for achieving a better sustained release catalyst system.
KW - Copper releasing property
KW - CuMgAl ternary spinel
KW - Methanol steaming reforming
KW - Solid-phase reaction
UR - http://www.scopus.com/inward/record.url?scp=85090149109&partnerID=8YFLogxK
U2 - 10.1016/j.fuel.2020.119041
DO - 10.1016/j.fuel.2020.119041
M3 - 文章
AN - SCOPUS:85090149109
SN - 0016-2361
VL - 284
JO - Fuel
JF - Fuel
M1 - 119041
ER -