Abstract
Critical velocity of an infinite long sandwich shell under moving internal pressure is studied using the sandwich shell theory and elastodynamics theory. Propagation of axisymmetric free harmonic waves in the sandwich shell is studied using the sandwich shell theory by considering compressibility and transverse shear deformation of the core, and transverse shear deformation of face sheets. Based on the elastodynamics theory, displacement components expanded by Legendre polynomials, and position-dependent elastic constants and densities are introduced into the equations of motion. Critical velocity is the minimum phase velocity on the desperation relation curve obtained by using the two methods. Numerical examples and the finite element (FE) simulations are presented. The results show that the two critical velocities agree well with each other, and two desperation relation curves agree well with each other when the wave number k is relatively small. However, two limit phase velocities approach to the shear wave velocities of the face sheet and the core respectively when k limits to infinite. The two methods are efficient in the investigation of wave propagation in a sandwich cylindrical shell when k is relatively small. The critical velocity predicted in the FE simulations agrees with theoretical prediction.
Original language | English |
---|---|
Pages (from-to) | 1569-1578 |
Number of pages | 10 |
Journal | Applied Mathematics and Mechanics (English Edition) |
Volume | 29 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2008 |
Keywords
- Critical velocity
- Elastodynamics
- Legendre polynomial
- Sandwich cylindrical shell