Crack and Shear Band Interaction in Bulk Metallic Glasses

Bingjin Li, Ding Zhou, Bing Hou, Shuangyin Zhang, Yulong Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper, bulk notched sample was designed to introduce crack and shear band interaction in bulk metallic glasses (BMGs). Deformation morphologies on the polished surface demonstrate that crack in BMGs might be deflected or arrested by surrounding shear bands. Distinct fracture morphologies could be observed in the interaction-induced soften region, indicating a transition of the mechanism dominating crack propagation. A hyperelastic model was used to discuss crack and shear band interaction. It’s proved that crack propagation is dominated by local elastic properties rather than global linear elastic properties due to shear induced softening and multiple shear bands. Our study suggests that multiple shear bands with a proper spacing are helpful to inhibit catastrophic crack propagation and to improve the plasticity of bulk metallic glasses.

Original languageEnglish
Title of host publicationThe Proceedings of the Asia-Pacific International Symposium on Aerospace Technology, APISAT 2018
EditorsXinguo Zhang
PublisherSpringer Verlag
Pages2992-3001
Number of pages10
ISBN (Print)9789811333040
DOIs
StatePublished - 2019
EventAsia-Pacific International Symposium on Aerospace Technology, APISAT 2018 - Chengdu, China
Duration: 16 Oct 201818 Oct 2018

Publication series

NameLecture Notes in Electrical Engineering
Volume459
ISSN (Print)1876-1100
ISSN (Electronic)1876-1119

Conference

ConferenceAsia-Pacific International Symposium on Aerospace Technology, APISAT 2018
Country/TerritoryChina
CityChengdu
Period16/10/1818/10/18

Keywords

  • Bulk metallic glasses
  • Crack
  • Interaction
  • Shear band

Fingerprint

Dive into the research topics of 'Crack and Shear Band Interaction in Bulk Metallic Glasses'. Together they form a unique fingerprint.

Cite this