Convolutional 2D LDA for nonlinear dimensionality reduction

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

22 Scopus citations

Abstract

Representing high-volume and high-order data is an essential problem, especially in machine learning field. Although existing two-dimensional (2D) discriminant analysis achieves promising performance, the single and linear projection features make it difficult to analyze more complex data. In this paper, we propose a novel convolutional two-dimensional linear discriminant analysis (2D LDA) method for data representation. In order to deal with nonlinear data, a specially designed Con-volutional Neural Networks (CNN) is presented, which can be proved having the equivalent objective function with common 2D LDA. In this way, the discriminant ability can benefit from not only the nonlinearity of Convolutional Neural Networks, but also the powerful learning process. Experiment results on several datasets show that the proposed method performs better than other state-of-the-art methods in terms of classification accuracy.

Original languageEnglish
Title of host publication26th International Joint Conference on Artificial Intelligence, IJCAI 2017
EditorsCarles Sierra
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2929-2935
Number of pages7
ISBN (Electronic)9780999241103
DOIs
StatePublished - 2017
Event26th International Joint Conference on Artificial Intelligence, IJCAI 2017 - Melbourne, Australia
Duration: 19 Aug 201725 Aug 2017

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume0
ISSN (Print)1045-0823

Conference

Conference26th International Joint Conference on Artificial Intelligence, IJCAI 2017
Country/TerritoryAustralia
CityMelbourne
Period19/08/1725/08/17

Fingerprint

Dive into the research topics of 'Convolutional 2D LDA for nonlinear dimensionality reduction'. Together they form a unique fingerprint.

Cite this