Constrained Wiener gains and filters for single-channel and multichannel noise reduction

Tao Long, Jacob Benesty, Jingdong Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Noise reduction has long been an active research topic in signal processing and many algorithms have been developed over the last four decades. These algorithms were proved to be successful in some degree to improve the signal-to-noise ratio (SNR) and speech quality. However, there is one problem common to all these algorithms: the volume of the enhanced signal after noise reduction is often perceived lower than that of the original signal. This phenomenon is particularly serious when SNR is low. In this paper, we develop two constrained Wiener gains and filters for noise reduction in the short-time Fourier transform (STFT) domain. These Wiener gains and filters are deduced by minimizing the mean-squared error (MSE) between the clean speech and the speech estimate with the constraint that the sum of the variances of the filtered speech and residual noise is equal to the variance of the noisy observation.

Original languageEnglish
Title of host publication2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9789881476821
DOIs
StatePublished - 17 Jan 2017
Event2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016 - Jeju, Korea, Republic of
Duration: 13 Dec 201616 Dec 2016

Publication series

Name2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016

Conference

Conference2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016
Country/TerritoryKorea, Republic of
CityJeju
Period13/12/1616/12/16

Fingerprint

Dive into the research topics of 'Constrained Wiener gains and filters for single-channel and multichannel noise reduction'. Together they form a unique fingerprint.

Cite this