Combining Evolutionary Information and Sparse Bayesian Probability Model to Accurately Predict Self-interacting Proteins

Yan Bin Wang, Zhu Hong You, Hai cheng Yi, Zhan Heng Chen, Zhen Hao Guo, Kai Zheng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Self-interacting proteins (SIPs) play a crucial role in investigation of various biochemical developments. In this work, a novel computational method was proposed for accelerating SIPs validation only using protein sequence. Firstly, the protein sequence was represented as Position-Specific Weight Matrix (PSWM) containing protein evolutionary information. Then, we incorporated the Legendre Moment (LM) and Sparse Principal Component Analysis (SPCA) to extract essential and anti-noise evolutionary feature from the PSWM. Finally, we utilized robust Probabilistic Classification Vector Machine (PCVM) classifier to carry out prediction. In the cross-validated experiment, the proposed method exhibits high accuracy performance with 95.54% accuracy on S.erevisiae dataset, which is a significant improvement compared to several competing SIPs predictors. The empirical test reveal that the proposed method can efficiently extracts salient features from protein sequences and accurately predict potential SIPs.

Original languageEnglish
Title of host publicationIntelligent Computing Theories and Application - 15th International Conference, ICIC 2019, Proceedings
EditorsDe-Shuang Huang, Kang-Hyun Jo, Zhi-Kai Huang
PublisherSpringer Verlag
Pages460-467
Number of pages8
ISBN (Print)9783030269685
DOIs
StatePublished - 2019
Externally publishedYes
Event15th International Conference on Intelligent Computing, ICIC 2019 - Nanchang, China
Duration: 3 Aug 20196 Aug 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11644 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th International Conference on Intelligent Computing, ICIC 2019
Country/TerritoryChina
CityNanchang
Period3/08/196/08/19

Keywords

  • Legendre Moment
  • Probabilistic Classification Vector Machine
  • Protein-protein interactions
  • Self-interacting proteins

Fingerprint

Dive into the research topics of 'Combining Evolutionary Information and Sparse Bayesian Probability Model to Accurately Predict Self-interacting Proteins'. Together they form a unique fingerprint.

Cite this