Collaborative Image Synthesis and Disease Diagnosis for Classification of Neurodegenerative Disorders with Incomplete Multi-modal Neuroimages

Yongsheng Pan, Yuanyuan Chen, Dinggang Shen, Yong Xia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

The missing data issue is a common problem in multi-modal neuroimage (e.g., MRI and PET) based diagnosis of neurodegenerative disorders. Although various generative adversarial networks (GANs) have been developed to impute the missing data, most current solutions treat the image imputation and disease diagnosis as two standalone tasks without considering the impact of diagnosis on image synthesis, leading to less competent synthetic images to the diagnosis task. In this paper, we propose the collaborative diagnosis-synthesis framework (CDSF) for joint missing neuroimage imputation and multi-modal diagnosis of neurodegenerative disorders. Under the CDSF framework, there is an image synthesis module (ISM) and a multi-modal diagnosis module (MDM), which are trained in a collaborative manner. Specifically, ISM is trained under the supervision of MDM, which poses the feature-consistent constraint to the cross-modality image synthesis, while MDM learns the disease-related multi-modal information from both real and synthetic multi-modal neuroimages. We evaluated our CDSF model against five image synthesis methods and three multi-modal diagnosis models on an ADNI datasets with 1464 subjects. Our results suggest that the proposed CDSF model not only generates neuroimages with higher quality, but also achieves the state-of-the-art performance in AD identification and MCI-to-AD conversion prediction.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings
EditorsMarleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Essert
PublisherSpringer Science and Business Media Deutschland GmbH
Pages480-489
Number of pages10
ISBN (Print)9783030872397
DOIs
StatePublished - 2021
Event24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: 27 Sep 20211 Oct 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12905 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period27/09/211/10/21

Fingerprint

Dive into the research topics of 'Collaborative Image Synthesis and Disease Diagnosis for Classification of Neurodegenerative Disorders with Incomplete Multi-modal Neuroimages'. Together they form a unique fingerprint.

Cite this