CDLRS: Collaborative Deep Learning Model with Joint Regression and Segmentation for Automatic Fovea Localization

Ziyang Chen, Yongsheng Pan, Yong Xia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

With the development of information technology, eyes are easily overworked for modern people, which increases the burden of ophthalmologists. This leads to the urgent need of the computer-aided early screening system for vision examination, where the color fundus photography (CFP) is the most economical and noninvasive fundus examination of ophthalmology. The macula, whose center (i.e., fovea) is the most sensitive part of vision, is an important area in fundus images since lesions on it often lead to decreased vision. As macula is usually difficult to identify in a fundus image, automated methods for fovea localization can help a doctor or a screening system quickly determine whether there are macular lesions. However, most localization methods usually can not give realistic locations for fovea with acceptable biases in a large-scale fundus image. To address this issue, we proposed a two-stage framework for accurate fovea localization, where the first stage resorts traditional image processing to roughly find a candidate region of the macula in each fundus image while the second stage resorts a collaborative neural network to obtain a finer location on the candidate region. Experimental results on the dataset of REFUGE2 Challenge suggest that our algorithms can localize fovea accurately and achieve advanced performance, which is potentially useful in practice.

Original languageEnglish
Title of host publicationOphthalmic Medical Image Analysis - 8th International Workshop, OMIA 2021, Held in Conjunction with MICCAI 2021, Proceedings
EditorsHuazhu Fu, Mona K. Garvin, Tom MacGillivray, Yanwu Xu, Yalin Zheng
PublisherSpringer Science and Business Media Deutschland GmbH
Pages52-61
Number of pages10
ISBN (Print)9783030869991
DOIs
StatePublished - 2021
Event8th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2021 held in conjunction with 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: 27 Sep 202127 Sep 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12970 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference8th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2021 held in conjunction with 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period27/09/2127/09/21

Keywords

  • Collaborative learning
  • Fovea
  • Fundus image
  • Macula
  • Object localization
  • REFUGE2

Fingerprint

Dive into the research topics of 'CDLRS: Collaborative Deep Learning Model with Joint Regression and Segmentation for Automatic Fovea Localization'. Together they form a unique fingerprint.

Cite this