TY - GEN
T1 - Blind channel identification for speech dereverberation using l 1-norm sparse learning
AU - Lin, Yuanqing
AU - Chen, Jingdong
AU - Kim, Youngmoo
AU - Lee, Daniel D.
PY - 2008
Y1 - 2008
N2 - Speech dereverberation remains an open problem after more than three decades of research. The most challenging step in speech dereverberation is blind channel identification (BCI). Although many BCI approaches have been developed, their performance is still far from satisfactory for practical applications. The main difficulty in BCI lies in finding an appropriate acoustic model, which not only can effectively resolve solution degeneracies due to the lack of knowledge of the source, but also robustly models real acoustic environments. This paper proposes a sparse acoustic room impulse response (RIR) model for BCI, that is, an acoustic RIR can be modeled by a sparse FIR filter. Under this model, we show how to formulate the BCI of a single-input multiple-output (SIMO) system into a l1- norm regularized least squares (LS) problem, which is convex and can be solved efficiently with guaranteed global convergence. The sparseness of solutions is controlled by l1-norm regularization parameters. We propose a sparse learning scheme that infers the optimal l1-norm regularization parameters directly from microphone observations under a Bayesian framework. Our results show that the proposed approach is effective and robust, and it yields source estimates in real acoustic environments with high fidelity to anechoic chamber measurements.
AB - Speech dereverberation remains an open problem after more than three decades of research. The most challenging step in speech dereverberation is blind channel identification (BCI). Although many BCI approaches have been developed, their performance is still far from satisfactory for practical applications. The main difficulty in BCI lies in finding an appropriate acoustic model, which not only can effectively resolve solution degeneracies due to the lack of knowledge of the source, but also robustly models real acoustic environments. This paper proposes a sparse acoustic room impulse response (RIR) model for BCI, that is, an acoustic RIR can be modeled by a sparse FIR filter. Under this model, we show how to formulate the BCI of a single-input multiple-output (SIMO) system into a l1- norm regularized least squares (LS) problem, which is convex and can be solved efficiently with guaranteed global convergence. The sparseness of solutions is controlled by l1-norm regularization parameters. We propose a sparse learning scheme that infers the optimal l1-norm regularization parameters directly from microphone observations under a Bayesian framework. Our results show that the proposed approach is effective and robust, and it yields source estimates in real acoustic environments with high fidelity to anechoic chamber measurements.
UR - http://www.scopus.com/inward/record.url?scp=85161978063&partnerID=8YFLogxK
M3 - 会议稿件
AN - SCOPUS:85161978063
SN - 160560352X
SN - 9781605603520
T3 - Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference
BT - Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference
PB - Neural Information Processing Systems
T2 - 21st Annual Conference on Neural Information Processing Systems, NIPS 2007
Y2 - 3 December 2007 through 6 December 2007
ER -