TY - JOUR
T1 - Bipolar Electrode-Based Precise Manipulation and Selective Electroporation of Cells
AU - Li, Kemu
AU - Wu, Yupan
AU - Hu, Yan
AU - Yue, Yuanbo
AU - Ma, Xun
AU - Wang, Shaoxi
AU - Gan, Xuetao
AU - Xu, Xiaohui
N1 - Publisher Copyright:
© 2025 American Chemical Society.
PY - 2025
Y1 - 2025
N2 - The intracellular delivery toward a specific type of single cell shows great potential in single-cell-specific therapeutic and diagnostic applications. Most of the current methods require high-precision micromanipulators or require multiple steps for motor fabrication, which hinders their practical application. Herein, we for the first time report a method for precise manipulation and selective electroporation of cells using a bipolar electrode. We achieved the precise control of the position of target cells via dielectrophoresis (DEP) at the edge of a bipolar electrode and selective electroporation of specific cells by the local intensified electric field obtained by the gap between the driving electrodes under a direct current (DC) pulse train. Active cell targeting and electroporation of cells are demonstrated using a rotating electric field to drive the cells and a train of pulses to transfect the cells. By harnessing pDEP and twDEP, our device offers the ability to precisely control the movement and placement of specific cells under a rotating electric field and enables the targeted cells to be driven toward regions where the electric field strength is optimized for efficient electroporation. Our method was demonstrated to be applicable across a wide range of cell types, by selective electroporation of different cells including yeast cells, K562 cells, THP-1 cells, 293T cells, and SNU-1 cells. In addition to the injection of fluorescence dye molecules, we also further demonstrated the introduction of plasmids into the SNU-1 cells successfully. This approach is generic and applicable to bacteria and a wide range of cell types, offering an important and novel experimental tool for targeted delivery and single-cell analysis.
AB - The intracellular delivery toward a specific type of single cell shows great potential in single-cell-specific therapeutic and diagnostic applications. Most of the current methods require high-precision micromanipulators or require multiple steps for motor fabrication, which hinders their practical application. Herein, we for the first time report a method for precise manipulation and selective electroporation of cells using a bipolar electrode. We achieved the precise control of the position of target cells via dielectrophoresis (DEP) at the edge of a bipolar electrode and selective electroporation of specific cells by the local intensified electric field obtained by the gap between the driving electrodes under a direct current (DC) pulse train. Active cell targeting and electroporation of cells are demonstrated using a rotating electric field to drive the cells and a train of pulses to transfect the cells. By harnessing pDEP and twDEP, our device offers the ability to precisely control the movement and placement of specific cells under a rotating electric field and enables the targeted cells to be driven toward regions where the electric field strength is optimized for efficient electroporation. Our method was demonstrated to be applicable across a wide range of cell types, by selective electroporation of different cells including yeast cells, K562 cells, THP-1 cells, 293T cells, and SNU-1 cells. In addition to the injection of fluorescence dye molecules, we also further demonstrated the introduction of plasmids into the SNU-1 cells successfully. This approach is generic and applicable to bacteria and a wide range of cell types, offering an important and novel experimental tool for targeted delivery and single-cell analysis.
UR - http://www.scopus.com/inward/record.url?scp=85217808631&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.4c05041
DO - 10.1021/acs.analchem.4c05041
M3 - 文章
AN - SCOPUS:85217808631
SN - 0003-2700
JO - Analytical Chemistry
JF - Analytical Chemistry
ER -