TY - JOUR
T1 - Bidirectional Reciprocative Information Communication for Few-Shot Semantic Segmentation
AU - Liu, Yuanwei
AU - Han, Junwei
AU - Yao, Xiwen
AU - Khan, Salman
AU - Cholakkal, Hisham
AU - Anwer, Rao Muhammad
AU - Liu, Nian
AU - Khan, Fahad Shahbaz
N1 - Publisher Copyright:
Copyright 2024 by the author(s)
PY - 2024
Y1 - 2024
N2 - Existing few-shot semantic segmentation methods typically rely on a one-way flow of category information from support to query, ignoring the impact of intra-class diversity. To address this, drawing inspiration from cybernetics, we introduce a Query Feedback Branch (QFB) to propagate query information back to support, generating a query-related support prototype that is more aligned with the query. Subsequently, a Query Amplifier Branch (QAB) is employed to amplify target objects in the query using the acquired support prototype. To further improve the model, we propose a Query Rectification Module (QRM), which utilizes the prediction disparity in the query before and after support activation to identify challenging positive and negative samples from ambiguous regions for query self-rectification. Furthermore, we integrate the QFB, QAB, and QRM into a feedback and rectification layer and incorporate it into an iterative pipeline. This configuration enables the progressive enhancement of bidirectional reciprocative flow of category information between query and support, effectively providing query-adaptive support information and addressing the intra-class diversity problem. Extensive experiments conducted on both PASCAL-5i and COCO-20i datasets validate the effectiveness of our approach. The code is available at https://github.com/LIUYUANWEI98/IFRNet.
AB - Existing few-shot semantic segmentation methods typically rely on a one-way flow of category information from support to query, ignoring the impact of intra-class diversity. To address this, drawing inspiration from cybernetics, we introduce a Query Feedback Branch (QFB) to propagate query information back to support, generating a query-related support prototype that is more aligned with the query. Subsequently, a Query Amplifier Branch (QAB) is employed to amplify target objects in the query using the acquired support prototype. To further improve the model, we propose a Query Rectification Module (QRM), which utilizes the prediction disparity in the query before and after support activation to identify challenging positive and negative samples from ambiguous regions for query self-rectification. Furthermore, we integrate the QFB, QAB, and QRM into a feedback and rectification layer and incorporate it into an iterative pipeline. This configuration enables the progressive enhancement of bidirectional reciprocative flow of category information between query and support, effectively providing query-adaptive support information and addressing the intra-class diversity problem. Extensive experiments conducted on both PASCAL-5i and COCO-20i datasets validate the effectiveness of our approach. The code is available at https://github.com/LIUYUANWEI98/IFRNet.
UR - http://www.scopus.com/inward/record.url?scp=85203790936&partnerID=8YFLogxK
M3 - 会议文章
AN - SCOPUS:85203790936
SN - 2640-3498
VL - 235
SP - 31048
EP - 31061
JO - Proceedings of Machine Learning Research
JF - Proceedings of Machine Learning Research
T2 - 41st International Conference on Machine Learning, ICML 2024
Y2 - 21 July 2024 through 27 July 2024
ER -