Abstract
Thermal fatigue behavior of two-dimensional carbon fiber reinforced SiC matrix composites fabricated by chemical vapor infiltration technique was investigated using an on-line quench method in controlled environments which simulated an aero-engine gas. A system of damage information acquisition (SDIA) was developed to study changes in electrical resistance of the C/SiC composites during their damage in dynamic testing. Damage to composites was assessed by the ultimate tensile strength (UTS) and SEM characterization. The results showed that: (1) under different atmosphere, the 2D-C/SiC composites subjected to thermal cycling behaved very differently and the most sensitive atmosphere was the wet oxygen; (2) external load could accelerate the degradation of the composites and changed the oxidation regimes of fibers; (3) the electrical resistance of the specimen could be detected on-line, stored in real time and analyzed reliably by the newly-developed SDIA; (4) 2D-C/SiC composites had an excellent thermal fatigue resistance in different environments.
Original language | English |
---|---|
Pages (from-to) | 121-127 |
Number of pages | 7 |
Journal | Carbon |
Volume | 44 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2006 |
Keywords
- Carbon composites
- Chemical vapor infiltration
- Mechanical properties
- Thermal expansion