AUC Optimization for Deep Learning Based Voice Activity Detection

Zi Chen Fan, Zhongxin Bai, Xiao Lei Zhang, Susanto Rahardja, Jingdong Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

22 Scopus citations

Abstract

Voice activity detection (VAD) based on deep neural networks (DNN) has demonstrated good performance in adverse acoustic environments. Current DNN based VAD optimizes a surrogate function, e.g. minimum cross-entropy or minimum squared error, at a given decision threshold. However, VAD usually works on-the-fly with a dynamic decision threshold; and ROC curve is a global evaluation metric of VAD that reflects the performance of VAD at all possible decision thresholds. In this paper, we propose to optimize the area under ROC curve (AUC) by DNN, which can maximize the performance of VAD in terms of the ROC curve. Experimental results show that optimizing AUC by DNN results in higher performance than the common method of optimizing the minimum squared error by DNN.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6760-6764
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: 12 May 201917 May 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
Country/TerritoryUnited Kingdom
CityBrighton
Period12/05/1917/05/19

Keywords

  • AUC
  • deep neural networks
  • voice activity detection

Fingerprint

Dive into the research topics of 'AUC Optimization for Deep Learning Based Voice Activity Detection'. Together they form a unique fingerprint.

Cite this