Abstract
Design and construction of multiphase nanostructures of metal organic frameworks (MOF) has recently been considered an effective method for the preparation of synergistic and excellent performance supercapacitor materials. Herein, Ni-Co-Mn-based metal organic frameworks (Ni-Co-Mn MOF) are prepared through an effortless one-step hydrothermal method, in which multiple metal nodes were evenly distributed between MOF nanostructure through ligands and formed a multiphase nanostructure through synergy. The synthesized Ni-Co-Mn0.25 MOF exhibits a prominent specific capacitance of 1575 F g−1 at 1 A g−1, remarkable rate capability and cycling stability. Moreover, we constructed an asymmetrical supercapacitor, which performed an excellent energy density of 73.56 Wh kg−1 at a power density of 399 W kg−1 and great cycling stability with 81.64% of original capacitance after 5000 cycles. Ni-Co-Mn MOF is a promising hybrid electrode material for excellent performance supercapacitor as well as it provides a simple and economic way to fabricate supercapacitor composite materials.
Original language | English |
---|---|
Pages (from-to) | 3553-3566 |
Number of pages | 14 |
Journal | Ionics |
Volume | 27 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2021 |
Keywords
- Asymmetrical Supercapacitors
- Mn-dope
- Ni-Co MOF
- Pseudocapacitors