TY - JOUR
T1 - APGVAE
T2 - Adaptive disentangled representation learning with the graph-based structure information
AU - Ke, Qiao
AU - Jing, Xinhui
AU - Woźniak, Marcin
AU - Xu, Shuang
AU - Liang, Yunji
AU - Zheng, Jiangbin
N1 - Publisher Copyright:
© 2023 Elsevier Inc.
PY - 2024/2
Y1 - 2024/2
N2 - Neural networks are used to learn task-oriented high-level representations in an end-to-end manner by building a multi-layer neural network. Generation models have developed rapidly with the emergence of deep neural networks. But it still has problems with the insufficient authenticity of generated images, the deficiency of diversity, consistency, and unexplainability in the generation process. Disentangled representation is an effective method to learn a high-level feature representation and realize the interpretability of deep neural networks. We propose a general disentangled representation learning network with variational autoencoder network as the basic framework for the image generation process. The graph-based structure of the priors is embedded in the last module of the deep encoder network to build the feature spaces by the class, task-oriented, and task-unrelated information respectively. Meanwhile the priors should be adaptively modified with the task relevance of a generated image. And the semi-supervised learning is further involved in the disentangled representation network framework to reduce the requirements of label and extend the majority of feature space under the task-unrelated feature assumption. Experimental results show that the proposed method is efficient for various types of images and has a good potential for further research and development.
AB - Neural networks are used to learn task-oriented high-level representations in an end-to-end manner by building a multi-layer neural network. Generation models have developed rapidly with the emergence of deep neural networks. But it still has problems with the insufficient authenticity of generated images, the deficiency of diversity, consistency, and unexplainability in the generation process. Disentangled representation is an effective method to learn a high-level feature representation and realize the interpretability of deep neural networks. We propose a general disentangled representation learning network with variational autoencoder network as the basic framework for the image generation process. The graph-based structure of the priors is embedded in the last module of the deep encoder network to build the feature spaces by the class, task-oriented, and task-unrelated information respectively. Meanwhile the priors should be adaptively modified with the task relevance of a generated image. And the semi-supervised learning is further involved in the disentangled representation network framework to reduce the requirements of label and extend the majority of feature space under the task-unrelated feature assumption. Experimental results show that the proposed method is efficient for various types of images and has a good potential for further research and development.
KW - Disentangled representation
KW - Graph-based structure embedding
KW - Image generation
KW - Variational autoencoder
UR - http://www.scopus.com/inward/record.url?scp=85178385643&partnerID=8YFLogxK
U2 - 10.1016/j.ins.2023.119903
DO - 10.1016/j.ins.2023.119903
M3 - 文章
AN - SCOPUS:85178385643
SN - 0020-0255
VL - 657
JO - Information Sciences
JF - Information Sciences
M1 - 119903
ER -