TY - JOUR
T1 - Anisotropy in fracture toughness and toughening mechanism of Ti-22Al-25Nb alloy related to texture and grain boundary damage
AU - Zhang, Penghui
AU - Zeng, Weidong
AU - Zhang, Fan
AU - Ma, Haoyuan
AU - Xu, Jianwei
AU - Liang, Xiaobo
AU - Zhao, Yongqing
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2025/1/5
Y1 - 2025/1/5
N2 - Combining the intrinsic (crack tip plasticity) and extrinsic (crack deflection) toughening mechanism, the anisotropy of fracture toughness for Ti-22Al-25Nb alloy obtain by B2 phase region isothermal forging process is discussed. The results show that the sequence of fracture toughness from high to low is RD (radial direction), OD (45° to RD) and AD (axial direction). Intrinsically, it is found that the damage of lamellar O phase ahead of the crack tip dominates crack propagation. Compared with grain interior, continuous lamellar O phase on grain boundary can more easily promote the nucleation and propagation of crack, reducing the intrinsic resistance of crack propagation. Consequently, AD sample with intergranular fracture has the smallest crack tip plastic zone than RD and OD samples with transgranular fracture. Due to the activation of prism slip for O phase, the texture of RD sample has a higher Schmid factor than that of OD sample, resulting in better crack tip plasticity. Extrinsically, it can be concluded that grain boundaries have a significant effect on crack deflection due to the pancake shaped B2 morphology. For RD sample, the grain boundary is perpendicular to the initial crack plane, so the stress intensity factor (KI) required for cleavage fracture is less than that for intergranular fracture. The deflection of the cleavage facets results in the highest crack propagation tortuosity. Also, the crack propagation near grain boundary of OD sample leads to significant deflection because the grain boundary is located in the direction of maximum shear stress. Compared with RD and OD samples, the KI required for intergranular fracture of AD sample is minimum, results in a flat fracture path.
AB - Combining the intrinsic (crack tip plasticity) and extrinsic (crack deflection) toughening mechanism, the anisotropy of fracture toughness for Ti-22Al-25Nb alloy obtain by B2 phase region isothermal forging process is discussed. The results show that the sequence of fracture toughness from high to low is RD (radial direction), OD (45° to RD) and AD (axial direction). Intrinsically, it is found that the damage of lamellar O phase ahead of the crack tip dominates crack propagation. Compared with grain interior, continuous lamellar O phase on grain boundary can more easily promote the nucleation and propagation of crack, reducing the intrinsic resistance of crack propagation. Consequently, AD sample with intergranular fracture has the smallest crack tip plastic zone than RD and OD samples with transgranular fracture. Due to the activation of prism slip for O phase, the texture of RD sample has a higher Schmid factor than that of OD sample, resulting in better crack tip plasticity. Extrinsically, it can be concluded that grain boundaries have a significant effect on crack deflection due to the pancake shaped B2 morphology. For RD sample, the grain boundary is perpendicular to the initial crack plane, so the stress intensity factor (KI) required for cleavage fracture is less than that for intergranular fracture. The deflection of the cleavage facets results in the highest crack propagation tortuosity. Also, the crack propagation near grain boundary of OD sample leads to significant deflection because the grain boundary is located in the direction of maximum shear stress. Compared with RD and OD samples, the KI required for intergranular fracture of AD sample is minimum, results in a flat fracture path.
KW - Anisotropy
KW - Crack deflection
KW - Crack tip plastic zone
KW - Fracture toughness
KW - Ti-22Al-25Nb alloy
UR - http://www.scopus.com/inward/record.url?scp=85210071791&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2024.177703
DO - 10.1016/j.jallcom.2024.177703
M3 - 文章
AN - SCOPUS:85210071791
SN - 0925-8388
VL - 1010
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 177703
ER -