TY - JOUR
T1 - An Intelligent Nonlinear Control Method for the Multistage Electromechanical Servo System
AU - Lian, Yunxiao
AU - Zhou, Yong
AU - Zhang, Jianxin
AU - Ma, Shangjun
AU - Wu, Shuai
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5/1
Y1 - 2022/5/1
N2 - In order to meet the requirements of servo systems, including sensitive and rapid adjust-ment, high control and motion accuracy, and strong working adaptability, in special application fields, such as high thrust and long travel, an adaptive inversion control method is proposed for the lateral force and other nonlinear factors of multistage electromechanical servo system (MEMSS). The position tracking controller of permanent magnet synchronous motor (PMSM), based on an improved adaptive inversion method, was designed and its stability was analyzed, and the Luenberger load torque observer model of PMSM was established. The EMESS simulation model of an adaptive inversion controller was built using the Simulink platform, and the motor multibody dynamics model was established in ADAMS software. Through the joint simulation of Simulink and ADAMS software, the results of EMESS under adaptive inversion controller and traditional PID controller were compared, and the feasibility and reliability of the designed adaptive inversion controller were verified. Finally, the designed controller was tested based on the experimental platform. The experimental results show that the adaptive inversion controller designed in this paper has better robustness and stability than the traditional PID controller.
AB - In order to meet the requirements of servo systems, including sensitive and rapid adjust-ment, high control and motion accuracy, and strong working adaptability, in special application fields, such as high thrust and long travel, an adaptive inversion control method is proposed for the lateral force and other nonlinear factors of multistage electromechanical servo system (MEMSS). The position tracking controller of permanent magnet synchronous motor (PMSM), based on an improved adaptive inversion method, was designed and its stability was analyzed, and the Luenberger load torque observer model of PMSM was established. The EMESS simulation model of an adaptive inversion controller was built using the Simulink platform, and the motor multibody dynamics model was established in ADAMS software. Through the joint simulation of Simulink and ADAMS software, the results of EMESS under adaptive inversion controller and traditional PID controller were compared, and the feasibility and reliability of the designed adaptive inversion controller were verified. Finally, the designed controller was tested based on the experimental platform. The experimental results show that the adaptive inversion controller designed in this paper has better robustness and stability than the traditional PID controller.
KW - adaptive inversion control
KW - intelligent nonlinear control
KW - joint simulation
KW - multistage electromechanical servo system
KW - permanent magnet synchronous motor
UR - http://www.scopus.com/inward/record.url?scp=85130685307&partnerID=8YFLogxK
U2 - 10.3390/app12105053
DO - 10.3390/app12105053
M3 - 文章
AN - SCOPUS:85130685307
SN - 2076-3417
VL - 12
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
IS - 10
M1 - 5053
ER -