@inproceedings{f88cfd2fd400453f88f710c02387e78d,
title = "An enhanced Markov clustering algorithm based on Physarum",
abstract = "Community mining is a vital problem for complex network analysis. Markov chains based algorithms are known as its easy-to-implement and have provided promising solutions for community mining. Existing Markov clustering algorithms have been optimized from the aspects of parallelization and penalty strategy. However, the dynamic process for enlarging the inhomogeneity attracts little attention. As the key mechanism of Markov chains based algorithms, such process affects the qualities of divisions and computational cost directly. This paper proposes a hybrid algorithm based on Physarum, a kind of slime. The new algorithm enhances the dynamic process of Markov clustering algorithm by embedding the Physarum-inspired feedback system. Specifically, flows between vertexes can enhance the corresponding transition probability in Markov clustering algorithms, and vice versa. Some networks with known and unknown community structures are used to estimate the performance of our proposed algorithms. Extensive experiments show that the proposed algorithm has higher NMI, Q values and lower computational cost than that of the typical algorithms.",
author = "Mingxin Liang and Chao Gao and Xianghua Li and Zili Zhang",
note = "Publisher Copyright: {\textcopyright} 2017, Springer International Publishing AG.; 21st Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2017 ; Conference date: 23-05-2017 Through 26-05-2017",
year = "2017",
doi = "10.1007/978-3-319-57454-7_38",
language = "英语",
isbn = "9783319574530",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "486--498",
editor = "Kyuseok Shim and Jae-Gil Lee and Longbing Cao and Xuemin Lin and Jinho Kim and Yang-Sae Moon",
booktitle = "Advances in Knowledge Discovery and Data Mining - 21st Pacific-Asia Conference, PAKDD 2017, Proceedings",
}