AdaDebunk: An Efficient and Reliable Deep State Space Model for Adaptive Fake News Early Detection

Ke Li, Bin Guo, Siyuan Ren, Zhiwen Yu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Automatically detecting fake news as early as possible becomes increasingly necessary. Conventional approaches of fake news early detection (FNED) verify news' veracity with a predefined and indiscriminate detection position, which depends on domain experience and leads to unstable performance. More advanced methods address this problem with a proposed concept of adaptive detection position (ADP), i.e. the position where the veracity of the news record can be concluded. Yet these methods either lack theoretical reliability or weaken complex dependencies among multi-aspect clues, thus failing to provide practical and reasonable detection. This work focuses on the adaptive FNED problem and proposes a novel efficient and reliable deep state space model, namely AdaDebunk, which models the complex probabilistic dependencies. Specifically, a Bayes' theorem-based dynamic inference algorithm is designed to infer the ADPs and veracity, supporting the accumulation of multi-aspect clues. Besides, a training mechanism with hybrid loss is also designed to solve the over-/under-fitting problems, which further trades off the performance and generalization ability. Experiments on two real-world fake news datasets are conducted to evaluate the effectiveness and superiority of AdaDebunk. Compared with the state-of-the-art baselines, AdaDebunk achieves a 10% increase in F1 performance. Meanwhile, a case study is provided to demonstrate the reliability of AdaDebunk as well as our research motivation.

Original languageEnglish
Title of host publicationCIKM 2022 - Proceedings of the 31st ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages1156-1165
Number of pages10
ISBN (Electronic)9781450392365
DOIs
StatePublished - 17 Oct 2022
Event31st ACM International Conference on Information and Knowledge Management, CIKM 2022 - Atlanta, United States
Duration: 17 Oct 202221 Oct 2022

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference31st ACM International Conference on Information and Knowledge Management, CIKM 2022
Country/TerritoryUnited States
CityAtlanta
Period17/10/2221/10/22

Keywords

  • deep state space model
  • dynamic inference
  • fake news early detection
  • reliable adaptive detection position

Fingerprint

Dive into the research topics of 'AdaDebunk: An Efficient and Reliable Deep State Space Model for Adaptive Fake News Early Detection'. Together they form a unique fingerprint.

Cite this