Achieving superior high-temperature performance in Ti60 alloy with dispersed TiC reinforcement via directed energy deposition

Yongxia Wang, Wei Fan, Mingji Dang, Siyu Zhang, Zhiwei Hao, Hua Tan, Fengying Zhang, Xin Lin

Research output: Contribution to journalArticlepeer-review

Abstract

Addition of reinforcing particle is a potential strategy to counteract the significant strength degradation of titanium alloys at their maximum service temperature of 600 °C. However, a long-standing challenge for particle-reinforced titanium matrix composites is their poor ductility and limited formability. In this work, directed energy deposition (DED) was employed to fabricate Ti60 alloy with dispersed TiC particles, using carbon-decorated C/Ti60 composite powders as feedstock. The reinforced TiC particles, with a volume fraction of approximately 9.8 %, consist of submicron TiC span across multiple α laths and nanoscale TiC particles within α laths. Due to the introduction of TiC particles, the average width of α phase has decreased from 1.18 μm to 0.92 μm. The TiC particles significantly enhance the high-temperature strength of the Ti60 alloy by 11.7 %, 11.0 %, and 10.6 % at 600 °C, 650 °C, and 700 °C, respectively, through a combination of Orowan strengthening, grain refinement and solid solution strengthening mechanisms, while retaining excellent elongation of 16.3 %, 42.3 % and 47.1 %. Additionally, the nanoscale TiC particles form coherent interfaces within the matrix, resulting in lattice distortions that increase the proportion of low-angle grain boundaries. This phenomenon can provide sufficient driving force for the early triggering of the Dynamic recrystallization (DRX) process, resulting in a lower recrystallization temperature in the TiC/Ti60 composites compared to the Ti60 alloy. This work represents a significant advancement in overcoming the trade-off between strength and ductility in particle-reinforced titanium matrix composites and offers a promising avenue for the next generation of high-temperature light alloys.

Original languageEnglish
Article number112690
JournalComposites Part B: Engineering
Volume304
DOIs
StatePublished - Sep 2025

Keywords

  • Directed energy deposition
  • Dynamic recrystallization
  • High temperature
  • Mechanical properties
  • Titanium matrix composites

Cite this