A Two Stage Adaptation Framework for Frame Detection via Prompt Learning

Xinyi Mou, Zhongyu Wei, Changjian Jiang, Jiajie Peng

Research output: Contribution to journalConference articlepeer-review

2 Scopus citations

Abstract

Framing is a communication strategy to bias discussion by selecting and emphasizing. Frame detection aims to automatically analyze framing strategy. Previous works on frame detection mainly focus on a single scenario or issue, ignoring the special characteristics of frame detection that new events emerge continuously and policy agenda changes dynamically. To better deal with various context and frame typologies across different issues, we propose a two-stage adaptation framework. In the framing domain adaptation from pretraining stage, we design two tasks based on pivots and prompts to learn a transferable encoder, verbalizer, and prompts. In the downstream scenario generalization stage, the transferable components are applied to new issues and label sets. Experiment results demonstrate the effectiveness of our framework in different scenarios. Also, it shows superiority both in full-resource and low-resource conditions.

Original languageEnglish
Pages (from-to)2968-2978
Number of pages11
JournalProceedings - International Conference on Computational Linguistics, COLING
Volume29
Issue number1
StatePublished - 2022
Event29th International Conference on Computational Linguistics, COLING 2022 - Gyeongju, Korea, Republic of
Duration: 12 Oct 202217 Oct 2022

Fingerprint

Dive into the research topics of 'A Two Stage Adaptation Framework for Frame Detection via Prompt Learning'. Together they form a unique fingerprint.

Cite this