A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap

Lijun Zhang, Wei Suo, Peng Wang, Yanning Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Human-object interactions (HOI) detection aims at capturing human-object pairs in images and corresponding actions. It is an important step toward high-level visual reasoning and scene understanding. However, due to the natural bias from the real world, existing methods mostly struggle with rare human-object pairs and lead to sub-optimal results. Recently, with the development of the generative model, a straightforward approach is to construct a more balanced dataset based on a group of supplementary samples. Unfortunately, there is a significant domain gap between the generated data and the original data, and simply merging the generated images into the original dataset cannot significantly boost the performance. To alleviate the above problem, we present a novel model-agnostic framework called Context-Enhanced Feature Alignment (CEFA) module, which can effectively align the generated data with the original data at the feature level and bridge the domain gap. Specifically, CEFA consists of a feature alignment module and a context enhancement module. On one hand, considering the crucial role of human-object pairs information in HOI tasks, the feature alignment module aligns the human-object pairs by aggregating instance information. On the other hand, to mitigate the issue of losing important context information caused by the traditional discriminator-style alignment method, we employ a context-enhanced image reconstruction module to improve the model's learning ability of contextual cues. Extensive experiments have shown that our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories.

Original languageEnglish
Title of host publicationMM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages8613-8622
Number of pages10
ISBN (Electronic)9798400706868
DOIs
StatePublished - 28 Oct 2024
Event32nd ACM International Conference on Multimedia, MM 2024 - Melbourne, Australia
Duration: 28 Oct 20241 Nov 2024

Publication series

NameMM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia

Conference

Conference32nd ACM International Conference on Multimedia, MM 2024
Country/TerritoryAustralia
CityMelbourne
Period28/10/241/11/24

Keywords

  • diffusion module
  • domain gap
  • feature alignment
  • human-object interactions

Fingerprint

Dive into the research topics of 'A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap'. Together they form a unique fingerprint.

Cite this