A numerical model for simulating liquid particles deposition on surface

Zhenxia Liu, Fei Zhang, Zhengang Liu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

The deposition of liquid particles, which may be converted from solid particles due to high temperature gas heating, makes much more harm on turbine vane blades compared to solid particles, since it may block film-cooling holes, worsen the cooling efficiency and aerodynamic performance of the turbine vane blades. Due to the similarity between the deposition of liquid particles on a surface and the icing on a surface, a numerical model for simulating particles deposition was developed based on the Myers icing model, an extension of the Messinger model, which has been applied in predicting aircraft icing or aero-engine icing. Compared to the conventional liquid particle deposition model, the numerical model in this paper considers the heat transfer and the flow of liquid particles during the particles phase transition from liquid state to solid state. In this model, the change of the surface profile due to the particles deposition was also considered, which was implemented with dynamic mesh technique. To test this model, deposition distribution and thickness obtained from the numerical simulations were compared to the experimental results. Additionally, a numerical simulation was conducted for liquid particle deposition on a flat plate. The result showed that the deposition thickness at the leading edge was much larger than that on the upper surface where the deposition appeared mainly at the middle and rear of the plate. The deposition mass and thickness increased with the increasing in the particle size. The effect of the particle size on the deposition thickness was more notable on the upper surface compared to that at the leading edge.

Original languageEnglish
Title of host publicationTurbomachinery
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791851029
DOIs
StatePublished - 2018
EventASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018 - Oslo, Norway
Duration: 11 Jun 201815 Jun 2018

Publication series

NameProceedings of the ASME Turbo Expo
Volume2D-2018

Conference

ConferenceASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018
Country/TerritoryNorway
CityOslo
Period11/06/1815/06/18

Fingerprint

Dive into the research topics of 'A numerical model for simulating liquid particles deposition on surface'. Together they form a unique fingerprint.

Cite this