A novel knowledge distillation-based feature selection for the classification of ADHD

Naseer Ahmed Khan, Samer Abdulateef Waheeb, Atif Riaz, Xuequn Shang

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is a brain disorder with characteristics such as lack of concentration, excessive fidgeting, outbursts of emotions, lack of patience, difficulty in organizing tasks, increased forgetfulness, and interrupting conversation, and it is affecting millions of people worldwide. There is, until now, not a gold standard test using which an ADHD expert can differentiate between an individual with ADHD and a healthy subject, making accurate diagnosis of ADHD a challenging task. We are proposing a Knowledge Distillation-based approach to search for discriminating features between the ADHD and healthy subjects. Learned embeddings from a large neural network, trained on the functional connectivity features, were fed to one hidden layer Autoencoder for reproduction of the embeddings using the same connectivity features. Finally, a forward feature selection algorithm was used to select a combination of most discriminating features between the ADHD and the Healthy Controls. We achieved promising classification results for each of the five individual sites. A combined accuracy of 81% in KKI, 60% Peking, 56% in NYU, 64% NI, and 56% OHSU and individual site wise accuracy of 72% in KKI, 60% Peking, 73% in NYU, 70% NI, and 71% OHSU were obtained using our extracted features. Our results also outperformed state-of-the-art methods in literature which validates the efficacy of our proposed approach.

Original languageEnglish
Article number1093
JournalBiomolecules
Volume11
Issue number8
DOIs
StatePublished - Aug 2021

Keywords

  • ADHD
  • Autoencoder
  • Classification
  • Connectivity
  • Features selection
  • fMRI
  • Neural networks
  • rs-fMRI

Fingerprint

Dive into the research topics of 'A novel knowledge distillation-based feature selection for the classification of ADHD'. Together they form a unique fingerprint.

Cite this