A Novel High-Order Sliding Mode Observer Based on Tanh-Function for a Fuel Cell UAV Power System with Uncertain Disturbance

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Compared with the traditional unmanned aerial vehicle (UAV), the Fuel Cell (FC) UAV has the advantages of long endurance, high power density, low noise, low pollution, and excellent thermal stealth performance. The paper aims to solve the uncertain disturbance problem in a UAV hybrid power system consisting of a fuel cell stack and a battery bank, such as UAV maneuver flight and oxygen starvation at high altitude. A novel high-order sliding mode observer (HOSMO) based on hyperbolic tangent function tanh(x) is proposed to stable the DC bus voltage of the FC-UAV, which combines a dual-loop super-twisting (ST) high-order sliding mode control (HOSMC). In addition, the main control object is a floating interleaved Buck-Boost bidirectional DC/DC converter (FIB-BDC) with high-conversion-ratio, low current ripple, and low stress. Through the proposed control method in the paper, the robustness and dynamic response of the system can be improved, and the chattering problem of HOSMO will be eliminated. What's more, The stability of the proposed observer is proved by Lyapunov theory and the convergence conditions are given. Finally, theoretical analysis and simulation experiments validate the effectiveness of the proposed approach.

Original languageEnglish
Title of host publication2019 IEEE Industry Applications Society Annual Meeting, IAS 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538645390
DOIs
StatePublished - Sep 2019
Event2019 IEEE Industry Applications Society Annual Meeting, IAS 2019 - Baltimore, United States
Duration: 29 Sep 20193 Oct 2019

Publication series

Name2019 IEEE Industry Applications Society Annual Meeting, IAS 2019

Conference

Conference2019 IEEE Industry Applications Society Annual Meeting, IAS 2019
Country/TerritoryUnited States
CityBaltimore
Period29/09/193/10/19

Keywords

  • bidirectional DC/DC converter
  • floating-interleaved
  • Fuel cell UAV
  • high order sliding mode observer
  • hyperbolic tangent function
  • robustness
  • uncertain disturbance

Fingerprint

Dive into the research topics of 'A Novel High-Order Sliding Mode Observer Based on Tanh-Function for a Fuel Cell UAV Power System with Uncertain Disturbance'. Together they form a unique fingerprint.

Cite this