A multi-stage fusion strategy for multi-scale GLCM-CNN model in differentiating malignant from benign polyps

Jiaxing Tan, Shu Zhang, Weiguo Cao, Yongfeng Gao, Lihong Li, Yumei Huo, Zhengrong Liang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Computer aided diagnosis (CADx) of polyps has shown great potential to advance the computed tomography colonography (CTC) technique with diagnostic capability. Facing the problem of numerous uncertainties such as polyp size, shape, and orientation in CTC, GLCM-CNN has been proved to be an effective deep learning based tumor classification method, where convolution neural network (CNN) makes decision based on the texture pattern encoded in gray level co-occurrence matrix (GLCM) containing 13 directions. The 13 directional GLCM, by sampling displacement, can be classified into 3 subgroups. Based on our evaluation on the information encoded in the three subgroups, we propose a multi-stage fusion CNN model, which makes the final decision based on two types of features, i.e. (1) a gate module selected group-specific features and (2) fused features learnt from all the features from three groups. On our polyp dataset, which contains 87 polyp masses, our proposed method outperforms both single sub-group based and 13 directional GLCM based CNN model by at least 1.3% in AUC by the average of 20 times 2 fold cross validation experiment results.

Original languageEnglish
Title of host publicationMedical Imaging 2020
Subtitle of host publicationComputer-Aided Diagnosis
EditorsHorst K. Hahn, Maciej A. Mazurowski
PublisherSPIE
ISBN (Electronic)9781510633957
DOIs
StatePublished - 2020
Externally publishedYes
EventMedical Imaging 2020: Computer-Aided Diagnosis - Houston, United States
Duration: 16 Feb 202019 Feb 2020

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11314
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2020: Computer-Aided Diagnosis
Country/TerritoryUnited States
CityHouston
Period16/02/2019/02/20

Keywords

  • colonic polyps
  • ct colonography
  • data fusion.
  • deep learning
  • gray level co-occurrence matrix

Fingerprint

Dive into the research topics of 'A multi-stage fusion strategy for multi-scale GLCM-CNN model in differentiating malignant from benign polyps'. Together they form a unique fingerprint.

Cite this