A meta-learning framework for few-shot classification of remote sensing scene

Pei Zhang, Yunpeng Bai, Dong Wang, Bendu Bai, Ying Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

While achieving remarkable success in remote sensing (RS) scene classification for the past few years, convolutional neural network (CNN) based methods suffer from the demand for large amounts of training data. The bottleneck in prediction accuracy has shifted from data processing limits toward a lack of ground truth samples, usually collected manually by experienced experts. In this work, we provide a meta-learning framework for few-shot classification of RS scene. Under the umbrella of meta-learning, we show it is possible to learn much information about a new category from only 1 or 5 samples. The proposed method is based on Prototypical Networks with a pre-trained stage and a learnable similarity metric. The experimental results show that our method outperforms three state-of-the-art few-shot algorithms and one typical CNN-based method, D-CNN, on two challenging datasets: NWPU-RESISC45 and RSD46-WHU.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4590-4594
Number of pages5
ISBN (Electronic)9781728176055
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada
Duration: 6 Jun 202111 Jun 2021

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2021-June
ISSN (Print)1520-6149

Conference

Conference2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021
Country/TerritoryCanada
CityVirtual, Toronto
Period6/06/2111/06/21

Keywords

  • Few-shot learning
  • Meta-learning
  • Remote sensing
  • Scene classification

Fingerprint

Dive into the research topics of 'A meta-learning framework for few-shot classification of remote sensing scene'. Together they form a unique fingerprint.

Cite this