A hybrid learning approach for TV program personalization

Zhiwen Yu, Xingshe Zhou, Zhiyi Yang

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

5 Scopus citations

Abstract

The rapid growth of communication technologies and the invention of set-top-box (STB) and personal digital recorder (PDR) have enabled today's television to receive and store tremendous programs. The abundance of TV programs precipitates a need for personalization tools to help people obtain programs that they really want to watch. User preference learning plays an important role in TV program personalization. In this paper, we introduce a hybrid user preference learning approach for TV program personalization. The learning architecture is designed to integrate multiple learning sources for preference learning, which are explicit input/modification, user viewing history, and user real-time feedback. Among those, learning from user viewing history and learning from user real-time feedback are described in detail. The experimental results proved that the hybrid learning approach outperforms the learning method merely adopting user real-time feedback.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsMircea Gh. Negoita, Robert J. Howlett, Lakhmi C. Jain
PublisherSpringer Verlag
Pages630-636
Number of pages7
ISBN (Print)9783540301325
DOIs
StatePublished - 2004

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume3213
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Fingerprint

Dive into the research topics of 'A hybrid learning approach for TV program personalization'. Together they form a unique fingerprint.

Cite this