TY - GEN
T1 - A harmonic mean linear discriminant analysis for robust image classification
AU - Zheng, Shuai
AU - Nie, Feiping
AU - Ding, Chris
AU - Huang, Heng
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2017/1/11
Y1 - 2017/1/11
N2 - Linear Discriminant Analysis (LDA) is a widelyused supervised dimensionality reduction method in computer vision and pattern recognition. In null space based LDA (NLDA), a well-known LDA extension, between-class distance is maximized in the null space of the within-class scatter matrix. However, there are some limitations in NLDA. Firstly, for many data sets, null space of within-class scatter matrix does not exist, thus NLDA is not applicable to those datasets. Secondly, NLDA uses arithmetic mean of between-class distances and gives equal consideration to all between-class distances, which makes larger between-class distances can dominate the result and thus limits the performance of NLDA. In this paper, we propose a harmonic mean based Linear Discriminant Analysis, Multi-Class Discriminant Analysis (MCDA), for image classification, which minimizes the reciprocal of weighted harmonic mean of pairwise between-class distance. More importantly, MCDA gives higher priority to maximize small between-class distances. MCDA can be extended to multi-label dimension reduction. Results on 7 single-label data sets and 4 multi-label data sets show that MCDA has consistently better performance than 10 other single-label approaches and 4 other multi-label approaches in terms of classification accuracy, macro and micro average F1 score.
AB - Linear Discriminant Analysis (LDA) is a widelyused supervised dimensionality reduction method in computer vision and pattern recognition. In null space based LDA (NLDA), a well-known LDA extension, between-class distance is maximized in the null space of the within-class scatter matrix. However, there are some limitations in NLDA. Firstly, for many data sets, null space of within-class scatter matrix does not exist, thus NLDA is not applicable to those datasets. Secondly, NLDA uses arithmetic mean of between-class distances and gives equal consideration to all between-class distances, which makes larger between-class distances can dominate the result and thus limits the performance of NLDA. In this paper, we propose a harmonic mean based Linear Discriminant Analysis, Multi-Class Discriminant Analysis (MCDA), for image classification, which minimizes the reciprocal of weighted harmonic mean of pairwise between-class distance. More importantly, MCDA gives higher priority to maximize small between-class distances. MCDA can be extended to multi-label dimension reduction. Results on 7 single-label data sets and 4 multi-label data sets show that MCDA has consistently better performance than 10 other single-label approaches and 4 other multi-label approaches in terms of classification accuracy, macro and micro average F1 score.
KW - Dimensionality reduction
KW - Image classification
KW - Linear discriminant analysis
UR - http://www.scopus.com/inward/record.url?scp=85013682623&partnerID=8YFLogxK
U2 - 10.1109/ICTAI.2016.65
DO - 10.1109/ICTAI.2016.65
M3 - 会议稿件
AN - SCOPUS:85013682623
T3 - Proceedings - 2016 IEEE 28th International Conference on Tools with Artificial Intelligence, ICTAI 2016
SP - 402
EP - 409
BT - Proceedings - 2016 IEEE 28th International Conference on Tools with Artificial Intelligence, ICTAI 2016
A2 - Esposito, Anna
A2 - Alamaniotis, Miltos
A2 - Mali, Amol
A2 - Bourbakis, Nikolaos
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 28th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2016
Y2 - 6 November 2016 through 8 November 2016
ER -