TY - GEN
T1 - A Gaussian-inverse Gamma mixture Distributions and Expectation-Maximization Based Robust Kalman Filter
AU - Fu, Hongpo
AU - Cheng, Yongmei
AU - Cheng, Cheng
N1 - Publisher Copyright:
© 2021 International Society of Information Fusion (ISIF).
PY - 2021
Y1 - 2021
N2 - In the study of the state estimation for the systems with unknown time-varying non-Gaussian noises, the existing robust Kalman filters (RKFs) perform well. However, the calculation loads of these RKFs usually are large and their performance is easily affected by the roughly preselected initial process noise covariance matrix (PNCM). To solve the problems, a new RKF is proposed. Firstly, a Gaussian-inverse Gamma mixture distribution is developed to model the inaccurate noises and a simple hierarchical Gaussian (HG) model is constructed. Then, the expectation-maximization (EM) method is applied to realize the adaptive adjustment of the prior scale matrix of the prediction error covariance. Based on the HG model and EM, a robust KF is derived, where the variational Bayesian (VB) approach is used to jointly estimate model parameters and an alternate iteration method is employed to reduce the computation time. Finally, our filter performance is tested. Compared with the existing state-of-the-art robust filters, the proposed filter has slightly better estimation accuracy and significantly less computation load. Meanwhile, the filter performance is almost not affected by the selection accuracy of initial PNCM.
AB - In the study of the state estimation for the systems with unknown time-varying non-Gaussian noises, the existing robust Kalman filters (RKFs) perform well. However, the calculation loads of these RKFs usually are large and their performance is easily affected by the roughly preselected initial process noise covariance matrix (PNCM). To solve the problems, a new RKF is proposed. Firstly, a Gaussian-inverse Gamma mixture distribution is developed to model the inaccurate noises and a simple hierarchical Gaussian (HG) model is constructed. Then, the expectation-maximization (EM) method is applied to realize the adaptive adjustment of the prior scale matrix of the prediction error covariance. Based on the HG model and EM, a robust KF is derived, where the variational Bayesian (VB) approach is used to jointly estimate model parameters and an alternate iteration method is employed to reduce the computation time. Finally, our filter performance is tested. Compared with the existing state-of-the-art robust filters, the proposed filter has slightly better estimation accuracy and significantly less computation load. Meanwhile, the filter performance is almost not affected by the selection accuracy of initial PNCM.
KW - Expectation-maximization
KW - Non-Gaussian noises
KW - Robust adaptive Kalman filter
KW - Variational Bayesian
UR - http://www.scopus.com/inward/record.url?scp=85123397705&partnerID=8YFLogxK
M3 - 会议稿件
AN - SCOPUS:85123397705
T3 - Proceedings of 2021 IEEE 24th International Conference on Information Fusion, FUSION 2021
BT - Proceedings of 2021 IEEE 24th International Conference on Information Fusion, FUSION 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 24th IEEE International Conference on Information Fusion, FUSION 2021
Y2 - 1 November 2021 through 4 November 2021
ER -