A Flow Base Bi-path Network for Cross-Scene Video Crowd Understanding in Aerial View

Zhiyuan Zhao, Tao Han, Junyu Gao, Qi Wang, Xuelong Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Drones shooting can be applied in dynamic traffic monitoring, object detecting and tracking, and other vision tasks. The variability of the shooting location adds some intractable challenges to these missions, such as varying scale, unstable exposure, and scene migration. In this paper, we strive to tackle the above challenges and automatically understand the crowd from the visual data collected from drones. First, to alleviate the background noise generated in cross-scene testing, a double-stream crowd counting model is proposed, which extracts optical flow and frame difference information as an additional branch. Besides, to improve the model’s generalization ability at different scales and time, we randomly combine a variety of data transformation methods to simulate some unseen environments. To tackle the crowd density estimation problem under extreme dark environments, we introduce synthetic data generated by game Grand Theft Auto V(GTAV). Experiment results show the effectiveness of the virtual data. Our method wins the challenge with a mean absolute error (MAE) of 12.701. Moreover, a comprehensive ablation study is conducted to explore each component’s contribution.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2020 Workshops, Proceedings
EditorsAdrien Bartoli, Andrea Fusiello
PublisherSpringer Science and Business Media Deutschland GmbH
Pages574-587
Number of pages14
ISBN (Print)9783030668228
DOIs
StatePublished - 2020
EventWorkshops held at the 16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: 23 Aug 202028 Aug 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12538 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceWorkshops held at the 16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period23/08/2028/08/20

Keywords

  • Crowd counting
  • Data augmentation
  • Optical flow
  • Synthetic data

Fingerprint

Dive into the research topics of 'A Flow Base Bi-path Network for Cross-Scene Video Crowd Understanding in Aerial View'. Together they form a unique fingerprint.

Cite this