7T Guided 3T Brain Tissue Segmentation Using Cascaded Nested Network

Jie Wei, Duc Toan Bui, Zhengwang Wu, Li Wang, Yong Xia, Gang Li, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Accurate segmentation of the brain into major tissue types, e.g., the gray matter, white matter, and cerebrospinal fluid, in magnetic resonance (MR) imaging is critical for quantification of the brain anatomy and function. The availability of 7T MR scanners can provide more accurate and reliable voxel-wise tissue labels, which can be leveraged to supervise the training of the tissue segmentation in the conventional 3T brain images. Specifically, a deep learning based method can be used to build the highly non-linear mapping from the 3T intensity image to the more reliable label maps obtained from the 7T images of the same subject. However, the misalignment between 3T and 7T MR images due to image distortions poses a major obstacle to achieving better segmentation accuracy. To address this issue, we measure the quality of the 3T-7T alignment by using a correlation coefficient map. Then we propose a cascaded nested network (CaNes-Net) for 3T MR image segmentation and a multi-stage solution for training this model with the ground-truth tissue labels from 7T images. This paper has two main contributions. First, by incorporating the correlation loss, the above mentioned obstacle can be well addressed. Second, the geodesic distance maps are constructed based on the intermediate segmentation results to guide the training of the CaNes-Net as an iterative coarse-to-fine process. We evaluated the proposed CaNes-Net with the state-of-the-art methods on 18 in-house acquired subjects. We also qualitatively assessed the performance of the proposed model and U-Net on the ADNI dataset. Our results indicate that the proposed CaNes-Net is able to dramatically reduce mis-segmentation caused by the misalignment and achieves substantially improved accuracy over all the other methods.

Original languageEnglish
Title of host publicationISBI 2020 - 2020 IEEE International Symposium on Biomedical Imaging
PublisherIEEE Computer Society
Pages140-143
Number of pages4
ISBN (Electronic)9781538693308
DOIs
StatePublished - Apr 2020
Event17th IEEE International Symposium on Biomedical Imaging, ISBI 2020 - Iowa City, United States
Duration: 3 Apr 20207 Apr 2020

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2020-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference17th IEEE International Symposium on Biomedical Imaging, ISBI 2020
Country/TerritoryUnited States
CityIowa City
Period3/04/207/04/20

Keywords

  • 7T MR
  • cascaded nested network
  • tissue segmentation

Fingerprint

Dive into the research topics of '7T Guided 3T Brain Tissue Segmentation Using Cascaded Nested Network'. Together they form a unique fingerprint.

Cite this