3D Convolutional Long-Short Term Memory Network for Spatiotemporal Modeling of fMRI Data

Wei Suo, Xintao Hu, Bowei Yan, Mengyang Sun, Lei Guo, Junwei Han, Tianming Liu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Complex spatiotemporal correlation and dependency embedded in functional magnetic resonance imaging (fMRI) data introduce critical challenges in related analytical methodologies. Despite remarkable successes, most of existing approaches only model spatial or temporal dependency alone and the development of a unified spatiotemporal model is still a challenge. Meanwhile, the recent emergence of deep neural networks has provided powerful models for interpreting complex spatiotemporal data. Here, we proposed a novel convolutional long-short term memory network (3DCLN) for spatiotemporal modeling of fMRI data. The proposed model is designed to decode fMRI volumes belonging to different task events by joint training a 3D convolutional neural network (CNN) for spatial dependency modeling and a long short-term memory (LSTM) network for temporal dependency modeling. We also designed a 3D deconvolution scheme for fMRI sequence reconstruction to inspect the feature learning process in the 3DCLN. The experimental results on the motor task-fMRI data from Human Connectome Project (HCP) showed that fMRI volumes can be decoded with a relatively high accuracy (76.38%). More importantly, the proposed 3DCLN can dramatically remove noises and highlights signals of interest in the reconstructed fMRI sequence and hence improve the performance of activation detection, validating the spatiotemporal feature learning in the proposed 3DCLN model.

Original languageEnglish
Title of host publicationMultimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy - 4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, Held in Conjunction with MICCAI 2019, Proceedings
EditorsDajiang Zhu, Jingwen Yan, Heng Huang, Li Shen, Paul M. Thompson, Carl-Fredrik Westin, Xavier Pennec, Sarang Joshi, Mads Nielsen, Stefan Sommer, Tom Fletcher, Stanley Durrleman
PublisherSpringer
Pages75-83
Number of pages9
ISBN (Print)9783030332259
DOIs
StatePublished - 2019
Event4th International Workshop on Multimodal Brain Image Analysis, MBAI 2019, and the 7th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 17 Oct 201917 Oct 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11846 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference4th International Workshop on Multimodal Brain Image Analysis, MBAI 2019, and the 7th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period17/10/1917/10/19

Keywords

  • 3D convolutional neural network
  • Functional magnetic resonance imaging
  • Long short-term memory network
  • Spatiotemporal modeling

Fingerprint

Dive into the research topics of '3D Convolutional Long-Short Term Memory Network for Spatiotemporal Modeling of fMRI Data'. Together they form a unique fingerprint.

Cite this