液态亚共晶 Al-4.5%Si 合金中定向枝晶生长与组织调控

Translated title of the contribution: Directional dendrite growth and microstructure modulation of liquid hypoeutectic Al-4.5%Si alloy

Xin Wang, Jianyuan Wang, Wei Zhai

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Liquid hypoeutectic Al-4.5%Si alloy was directionally solidified with a novel Bridgman type apparatus which was featured by the upward motion of heating furnace. A broad growth velocity range covering three orders of magnitude from 0.1 μm/s up to 100 μm/s was applied to realize the whole structural evolution process from planar interface through cellular morphology until dendritic growth. In order to explore the dominant influences of growth velocity, the liquid temperature gradient ahead of solid/liquid interface was maintained at the constant level of 200 K/cm during all experiments, which shows that the critical growth velocity to initiate S/L interface instability is 0.43 μm/s, whereas the growth velocity threshold to induce cell-dendrite transition is 3.3 μm/s. The theoretical calculation that the constitutionally supercooled zone extends at 2.6−10 mm in front of S/L interface, where the maximum supercooling varies in the range of 2−193.8 K. In contrast, the actual mushy zone length during directional dendrite growth is in the range of 2.8−6.2 mm. The experimental results validate the theoretical predictions of KGT columnar dendrite growth model for essential parameters as dendrite tip radius, tip temperature and tip compositions. Both the Hunt model for primary dendrite spacing and the Kurz-Fisher model for secondary arm spacing agree well with actual experiments. Nevertheless, the (α(Al) +Si) eutectic growth kinetics within interdendritic spaces of mushy zone only exhibits qualitative consistency with experimental data.

Translated title of the contributionDirectional dendrite growth and microstructure modulation of liquid hypoeutectic Al-4.5%Si alloy
Original languageChinese (Traditional)
Pages (from-to)1938-1951
Number of pages14
JournalZhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals
Volume34
Issue number6
DOIs
StatePublished - Jun 2024

Fingerprint

Dive into the research topics of 'Directional dendrite growth and microstructure modulation of liquid hypoeutectic Al-4.5%Si alloy'. Together they form a unique fingerprint.

Cite this