TY - JOUR
T1 - 涡扇发动机变参数鲁棒H∞滤波器设计
AU - Jia, Qiu Sheng
AU - Shi, Xin Xing
AU - Li, Hua Cong
AU - Xiao, Hong Liang
AU - Han, Xiao Bao
N1 - Publisher Copyright:
© 2020, Editorial Department of Journal of Propulsion Technology. All right reserved.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - As to solve the problem of performance parameters estimation of turbofan engine, under modeling error and measurement noise disturbances, there are some flaws including the low filter estimation accuracy, the slow filter convergence rate, and sensitive to uncertain measurement noise and modeling errors in Kalman filter algorithm and its extension. An approach based on the parameter-varying robust H∞ filter technique is investigated. A robust filter, which satisfied robust H∞ performance requirement, is developed by using affine parameter-dependent Lyapunov functions. The couping product term, between parameter-varying Lyapunov functions matrix and system coefficient matrix in parameter-dependent Linear Matrix Inequalities (LMIs), will lead to non-convex optimization problem. By introducing convex polytope technology, the problem above can be transformed into conventional LMIs constraint convex optimization problem to solve. The conservatism of Linear Parameter Varying (LPV) robust filter design is reduced, and the global solution is obtained. The simulation results of a turbofan engine showed that, compared with the extended Kalman filter, the designed filter has fast dynamic tracking speed and high filtering accuracy, with steady-state estimation error of ΔFn less than 0.1% and relative estimation error of ΔFn less than 2.5%. Beyond that, it can restrain modeling error and measurement noise disturbance strongly.
AB - As to solve the problem of performance parameters estimation of turbofan engine, under modeling error and measurement noise disturbances, there are some flaws including the low filter estimation accuracy, the slow filter convergence rate, and sensitive to uncertain measurement noise and modeling errors in Kalman filter algorithm and its extension. An approach based on the parameter-varying robust H∞ filter technique is investigated. A robust filter, which satisfied robust H∞ performance requirement, is developed by using affine parameter-dependent Lyapunov functions. The couping product term, between parameter-varying Lyapunov functions matrix and system coefficient matrix in parameter-dependent Linear Matrix Inequalities (LMIs), will lead to non-convex optimization problem. By introducing convex polytope technology, the problem above can be transformed into conventional LMIs constraint convex optimization problem to solve. The conservatism of Linear Parameter Varying (LPV) robust filter design is reduced, and the global solution is obtained. The simulation results of a turbofan engine showed that, compared with the extended Kalman filter, the designed filter has fast dynamic tracking speed and high filtering accuracy, with steady-state estimation error of ΔFn less than 0.1% and relative estimation error of ΔFn less than 2.5%. Beyond that, it can restrain modeling error and measurement noise disturbance strongly.
KW - Linear matrix inequality
KW - Linear parameter varying
KW - Parameter-dependent Lyapunov functions
KW - Robust H filter
KW - Turbofan engine
UR - http://www.scopus.com/inward/record.url?scp=85083756660&partnerID=8YFLogxK
U2 - 10.13675/j.cnki.tjjs.190498
DO - 10.13675/j.cnki.tjjs.190498
M3 - 文章
AN - SCOPUS:85083756660
SN - 1001-4055
VL - 41
SP - 910
EP - 915
JO - Tuijin Jishu/Journal of Propulsion Technology
JF - Tuijin Jishu/Journal of Propulsion Technology
IS - 4
ER -