TY - JOUR
T1 - 微小型四旋翼无人机垂面栖停轨迹规划与控制
AU - Sun, Yang
AU - Chang, Min
AU - Bai, Junqiang
N1 - Publisher Copyright:
© 2022 AAAS Press of Chinese Society of Aeronautics and Astronautics. All rights reserved.
PY - 2022/9/25
Y1 - 2022/9/25
N2 - Micro-quadrotors have wide applications in the areas of military use, civil use and scientific research due to their tiny size, agility and portability. However, miniaturization of the UAV reduces the space of energy storge, leading to loss of endurance and deterioration of deployment performance. Perching maneuvering, originating from birds perching, is a hot topic for exploring the solution for extending the endurance of micro quadrotors. This method aims to take the advantage of maneuverability to achieve perching the quadrotor on the vertical surface with the help of perching mechanism. When perching, the interaction force from the vertical surface can afford the gravity of quadrotor, and there is no need to maintain the aerodynamics. Therefore, motors can be turned off, and the energy consumption would be much less than that in flight. Perching maneuvering involves complex problems such as motion control. In this paper, perching control is solved by trajectory generation and track control. First, a dynamics model is built to describe the motion of the perching quadrotor, and the model is further simplified into a longitudinal model. Then, open-loop trajectory is generated and the initial state is set with reference to the perching restrictions. Finally, the geometry control method is applied to achieve track control, and the method is also modified to make the track more precisely. Simulink experiments verify the effectiveness of the proposed method.
AB - Micro-quadrotors have wide applications in the areas of military use, civil use and scientific research due to their tiny size, agility and portability. However, miniaturization of the UAV reduces the space of energy storge, leading to loss of endurance and deterioration of deployment performance. Perching maneuvering, originating from birds perching, is a hot topic for exploring the solution for extending the endurance of micro quadrotors. This method aims to take the advantage of maneuverability to achieve perching the quadrotor on the vertical surface with the help of perching mechanism. When perching, the interaction force from the vertical surface can afford the gravity of quadrotor, and there is no need to maintain the aerodynamics. Therefore, motors can be turned off, and the energy consumption would be much less than that in flight. Perching maneuvering involves complex problems such as motion control. In this paper, perching control is solved by trajectory generation and track control. First, a dynamics model is built to describe the motion of the perching quadrotor, and the model is further simplified into a longitudinal model. Then, open-loop trajectory is generated and the initial state is set with reference to the perching restrictions. Finally, the geometry control method is applied to achieve track control, and the method is also modified to make the track more precisely. Simulink experiments verify the effectiveness of the proposed method.
KW - endurance extension
KW - micro-quadrotor
KW - perching on vertical surface
KW - track control
KW - trajectory planning
UR - http://www.scopus.com/inward/record.url?scp=85141920122&partnerID=8YFLogxK
U2 - 10.7527/S1000-6893.2021.25756
DO - 10.7527/S1000-6893.2021.25756
M3 - 文章
AN - SCOPUS:85141920122
SN - 1000-6893
VL - 43
JO - Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica
JF - Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica
IS - 9
M1 - 325756
ER -