Parallel vector field regularized non-negative matrix factorization for image representation

Yong Peng, Rixin Tang, Wanzeng Kong, Feiwei Qin, Feiping Nie

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)

摘要

Non-negative Matrix Factorization (NMF) is a popular model in machine learning, which can learn parts-based representation by seeking for two non-negative matrices whose product can best approximate the original matrix. However, the manifold structure is not considered by NMF and many of the existing work use the graph Laplacian to ensure the smoothness of the learned representation coefficients on the data manifold. Further, beyond smoothness, it is suggested by recent theoretical work that we should ensure second order smoothness for the NMF mapping, which measures the linearity of the NMF mapping along the data manifold. Based on the equivalence between the gradient field of a linear function and a parallel vector field, we propose to find the NMF mapping which minimizes the approximation error, and simultaneously requires its gradient field to be as parallel as possible. The continuous objective function on the manifold can be discretized and optimized under the general NMF framework. Extensive experimental results suggest that the proposed parallel field regularized NMF provides a better data representation and achieves higher accuracy in image clustering.

源语言英语
主期刊名2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
2216-2220
页数5
ISBN(印刷版)9781538646588
DOI
出版状态已出版 - 10 9月 2018
活动2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, 加拿大
期限: 15 4月 201820 4月 2018

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2018-April
ISSN(印刷版)1520-6149

会议

会议2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
国家/地区加拿大
Calgary
时期15/04/1820/04/18

指纹

探究 'Parallel vector field regularized non-negative matrix factorization for image representation' 的科研主题。它们共同构成独一无二的指纹。

引用此